

Learning Joomla! 1.5
Extension Development

Creating Modules, Components, and Plug-Ins
with PHP

A practical tutorial for creating your first Joomla! 1.5
extensions with PHP

Joseph LeBlanc

 BIRMINGHAM - MUMBAI

Learning Joomla! 1.5 Extension Development
Creating Modules, Components, and Plug-Ins with PHP

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2007

Production Reference: 1180507

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847191-30-4

www.packtpub.com

Cover Image by www.visionwt.com

Credits

Author

Joseph LeBlanc

Reviewer

Riccardo Tacconi

Development Editor

Douglas Paterson

Assistant Development Editor

Mithil Kulkarni

Technical Editor

Akshara Aware

Editorial Manager

Dipali Chittar

Project Manager

Patricia Weir

Project Coordinator

Abhijeet Deobhakta

Indexer

Bhushan Pangaonkar

Proofreader

Chris Smith

Production Coordinator

Manjiri Nadkarni
Shantanu Zagade

Cover Designer

Manjiri Nadkarni

About the Author

Joseph LeBlanc started with computers at a very young age. His independent
education gave him the flexibility to experiment and learn computer science.
Joseph holds a bachelors degree in Management Information Systems from Oral
Roberts University.

Joseph is currently a freelance Joomla! extension developer. He released a component
tutorial in May 2004, which was later translated into French, Polish, and Russian.
Work samples and open-source extensions are available at www.jlleblanc.com.
In addition to freelancing, he served as a board member of the inaugural DC PHP
Conference. He has also worked as a programmer for a web communications firm in
Washington, DC.

I would like to thank the following people for making this
book possible:

Packt Publishing, for giving me the opportunity to author this work.

The Joomla! Team, for developing some of the best software in
the world.

Keith Casey, Conrad Decker, Jim Johnson, and Robyn Wyrick for
their insights and advice on managing software companies.

To Steve and Sue Meeks, for their flexibility with my schedule
during the writing process and for giving Joomla! a shot.

Everyone who has downloaded and used my open-source
components.

My professors, for taking me on the Journey of a Byte and showing
me how to write effectively.

Mom and Dad, for teaching me how to learn.

 About the Reviewer

Riccardo Tacconi works for an Italian company as a system administrator and
web developer using PHP, MySql, and Oracle. He is an MCP and studies IT
part-time at the British Open University. His main interests are web development,
Windows and Linux administration, Robotics, and Java software development (JMF,
motion detection, CV and distributed systems).

He loves Linux and he is a proud member of the local Linux User Group: GROLUG.
He tries to innovate ways to substitute Windows based technologies with Linux and
open-source alternatives.

Table of Contents
Preface� 1
Chapter 1: Joomla! Extension Development: An Overview� 5

Why Extend Joomla!� 5
Customization versus Extension� 6
How to Extend Joomla!� 6

Components� 6
Modules� 7
Plug-Ins� 7

Topic Overview� 7
Creating Toolbars and List Screens� 7
Maintaining a Consistent Look and Reducing Repetitive Code Using HTML
Functions� 7
Accessing the Database and Managing Records� 8
Security and the Preferred Way of Getting Request Variables� 8
Menu Item Control� 8
Controlling the Logic Flow Within a Component� 9
Configuration Through XML Parameters� 9
Packaging and Distributing� 9

Our Example Project� 9
Summary� 10

Chapter 2: Getting Started with Component Development� 11
Joomla!'s Component Structure� 11
Executing the Component� 12
Joomla!'s Division between Front End and Back End� 13
Registering Your Component in the Database� 14
Creating Toolbars� 18

Available Toolbar Buttons� 21
Summary� 22

Table of Contents

[ii]

Chapter 3: Back-End Development� 23
Creating the Database Table� 23
Creating a Table Class� 25
Creating the Review Form� 26
Processing the Data� 34
Creating a List Screen� 36
Editing Records� 40
Deleting Records� 43
Summary� 44

Chapter 4: Front-End Development� 45
Listing the Reviews� 45
Displaying a Review� 48
Generating Search-Engine Friendly Links� 51

Building URL Segments� 52
Parsing URL Segments� 54

Adding Comments� 55
Displaying Comments� 61
Summary� 63

Chapter 5: Module Development� 65
Registering the Module in the Database� 65
Creating and Configuring a Basic Module� 68

Recruiting Some Helpers� 70
Try Some Different Layouts� 71
Mixing it Up� 74

Summary� 76
Chapter 6: Expanding the Project� 77

Model, View, Controller: Why?� 77
Building Data Models� 78

Modeling All Reviews� 78
Modeling Individual Reviews� 79

Migrating to Views� 80
Viewing All� 81
Viewing One� 82

Switching Through Controllers� 85
Updating Links and Routes� 88

Reorganizing the Back-End Code� 89
Publishing Controls for Reviews� 93
Adding Pagination� 95
Management for Comments� 98

Table of Contents

[iii]

Additional Toolbars� 106
Summary� 107

Chapter 7: Behind the Scenes: Plug-Ins� 109
Database Queries� 110
A Simple Link Plug-In� 112
An Information Box Plug-In� 116
Searching the Reviews� 121
Summary� 126

Chapter 8: Configuration Settings� 127
Adding Parameters to Extensions� 127
Parameters for Modules� 127
Parameters for Plug-Ins� 131
Parameters for Components� 140
Summary� 146

Chapter 9: Packing Everything Together� 147
Listing All Files� 147
Packaging the Module� 148
Packaging Plug-ins� 149
Packaging the Component� 151
Including SQL Queries� 153
Creating Back-End Menu Items� 155
Extra Installation Scripts� 155
Distribution� 157
Summary� 158

Index� 159

Preface
Joomla! is an award-winning content management system with a powerful extension
system. This makes it easy for third-party developers to build code extending
Joomla's core functionality without hacking or modifying the core code.

Once an extension is developed, it can be packaged into a ZIP file for site
administrators to upload and use. The people who manage Joomla!-based websites
and want to use extensions need not know any programming at all. Once the ZIP file
is uploaded, the extension is installed.

The name Joomla! comes from the Swahili word 'jumla', meaning "all together" or "as
a whole". When you install an extension in Joomla!, it blends in with the rest of the
site; all the extensions truly appear "all together, as a whole".

What This Book Covers
Chapter 1 gives an overview of how Joomla! works. The example project
used throughout the book is also introduced. The three types of extensions
(components, modules, and plug-ins) are covered along with descriptions of how
they work together.

Chapter 2 begins the development of the component used in the project. Initial entries
are made in the database and toolbars for the back end are built. The general file
structure of Joomla! is also introduced.

Chapter 3 walks through the creation of the back-end interface for creating,
editing, and deleting records in the project. Database table classes are introduced,
as well as common HTML elements used to make the project blend in with other
Joomla! extensions.

Chapter 4 builds a front-end interface for listing and viewing records. Additionally,
code to generate and interpret search-engine-friendly links is covered. The project is
also expanded slightly when a commenting feature is added.

Preface

[�]

Chapter 5 introduces a module used to list records on every page of the site. The
module takes advantage of layouts, where the same data can be formatted differently
depending on how the code is called. Some of the code is also separated out into a
helper class so that the main code generating the module stays simple.

Chapter 6 rewrites the component developed in Chapters 2, 3, and 4 so that it follows
the Model, View, Controller design pattern. Controls over the publishing of records
are introduced, in addition to an interface for removing offensive comments. More
toolbars are added and the search-engine-friendly URL code is redesigned.

Chapter 7 develops three plug-ins. The first plug-in finds the names of records in
the database and turns them in to links to those records. A second plug-in displays
a short summary of the record when certain code is added to content articles.
Finally, another plug-in is designed so that records are pulled up along with Joomla!
content searches.

Chapter 8 adds configuration parameters to the component, module, and plug-ins.
These are handled through XML and generate a predictable interface in the back
end for setting options. Retrieving the values of these parameters is standardized
through built-in functions.

Chapter 9 expands the XML files used for parameters and adds a listing of all the
files in each extension. Once this file is compressed along with the rest of the code
into a ZIP archive, it is ready to be installed on another copy of Joomla! without any
programmer intervention. Custom installation scripts and SQL code are also added
to the component.

Code testing was performed using Joomla 1.5 beta 2.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code will be set as follows:

function showReviews($option)
{
 $query = "SELECT * FROM #__reviews";

Preface

[�]

 $db->setQuery($query);
 $rows = $db->loadObjectList();
 if ($db->getErrorNum()) {
 echo $db->stderr();
 return false;
 }
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

switch($task)
{
 case 'add':
 editReview($option);
 break;
 case 'save':
 saveReview($option);
 break;
}

Any command-line input and output is written as follows:

INSERT INTO jos_components (name, link, admin_menu_link,

 admin_menu_alt, `option`, admin_menu_img, params)

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

Preface

[�]

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Joomla! Extension
Development: An Overview

You have developed dynamic websites in the past, but a friend of yours told you
about Joomla!, so you decide to give it a try. You wish to start a simple website
about restaurants after being inspired by the attractive celebrity chefs from the
Food Network. The installation goes smoothly and more quickly than attempting
to build a content management system from scratch. After finding a delicious
template, adding some menus, and banging out a couple of reviews, you begin to
think of some of the features that will draw in more visitors and even some cash.
Within minutes, you install a shopping cart for selling books, a forum for gathering
suggestions of places to review, and some advertising affiliated programs for
the sidebars.

However, as you glance through the homepage, you feel something is missing. Then
suddenly a brilliant idea hits you for something entirely new. Once it is finished,
you know others will want to use it for their sites as well. You look around
Joomla!'s source files and start looking for a way of building code that will slide
right into place.

Why Extend Joomla!
Joomla! is not only designed to handle the content articles, but also to allow a
number of complex applications to be cleanly integrated. Shopping carts, forums,
social networking profiles, job boards, and real estate listings are examples of
extensions that the developers have written for Joomla!. All of these can run on a
Joomla! site, and only a single database, template, and core need to be maintained.
When you build an extension to Joomla!, it will inherit the look and feel of the
overall site. Any type of program that can be coded in PHP is a potential component
waiting to be written.

Joomla! Extension Development: An Overview

[�]

Your extensions can also be portable. When coded correctly, you will easily be able
to install your code on another copy of Joomla! without having to enter the database
logins and other basic configuration information again. Additionally, you will be
able to distribute your extensions to others so that they can enjoy them, without any
programming or database knowledge.

Customization versus Extension
Joomla!'s code is designed to be extended rather than hacked or directly modified.
Rather than changing the core code, it is preferable to write an extension. When
updates and patches are released for Joomla! itself, the core code will be updated,
but your extensions will not be overwritten. These extensions are crafted in a
self‑contained manner, allowing you to freely develop your own code without
disturbing other items present in the Joomla! installation.

Although they are self-contained, extensions do not operate in a completely sealed
environment; you can mix different kinds to get the functionalities you desire.
Joomla!'s code allows extensions to share resources and sometimes perform actions
on each other. Since we can write extensions, we will do this instead of customizing
the core.

How to Extend Joomla!
There are three types of extensions Joomla! supports, each with a specific use.

Components
Of the extensions available, components are the most essential. Components are
essentially what you see in the "main" portion of the page. Joomla! is designed
to load and run exactly one component for each page generated. Consequently,
Joomla!'s core content management functionality is itself a component.

Components frequently have sophisticated back-end controls. The back end is
commonly used to create and update records in database tables; also it can do
typically anything, provided it is programmed in PHP. For instance, you may have
a batch job that typically runs from a UNIX command line, but you can use the back
end to provide a link where non-programmers can call it. You can also use it to allow
site administrators to upload pictures or videos.

Chapter 1

[�]

Modules
In contrast to components, any number of modules can appear on a page. Modules
typically make up the elements of a sidebar or content menus. Modules complement
the content contained in a component; they are not intended to be the main substance
of a page. Joomla! also supports content modules, which involve no programming
and can be displayed alongside coded components. The back‑end controls for
modules are limited, typically consisting of basic formatting.

Plug-Ins
When a piece of code is needed throughout the site, it is best implemented as a
plug-in (formerly called a Mambot). Plug-ins are commonly used to format the
output of a component or module when a page is built. Some examples of plug-ins
include keyword highlighting, article comment boxes, and JavaScript-based HTML
editors. Plug-ins can also be used to extend the results found in the core search
component. The back-end controls are similar to those of modules.

Topic Overview
This book will cover the following topics regarding developing extensions
for Joomla!.

Creating Toolbars and List Screens
Joomla! has a standard set of toolbar buttons used throughout the back end. These
keep a consistent appearance across components, so users quickly become familiar
with the corresponding functions. When necessary, the labeling and functions of
these buttons can be changed and new buttons can also be added.

Like the standard toolbars, Joomla! has a certain look for screens that list a set of
records from the database. These lists usually have links to edit screens for the
individual records and have toggles that change the publishing status of the record.
Automatic pagination is also available for lists.

Maintaining a Consistent Look and Reducing
Repetitive Code Using HTML Functions
Several standard CSS class names are used to format content and HTML elements
within your extensions. This makes it easy for your extensions to seamlessly blend in
with the rest of the website. Additionally, Joomla! includes many functions to automate
the generation of checkboxes, dropdowns, select lists, and other common elements.

Joomla! Extension Development: An Overview

[�]

Accessing the Database and Managing
Records
A common database object is used in Joomla! so that only one connection is made
during every page request. This object also provides a set of functions to make
queries and retrieve results. These functions are database independent and are
designed in such a way that you can install multiple copies of Joomla! into the same
database when desired.

Besides a common database object, Joomla! has a standard database table class.
Records can be created, read, updated, and deleted using the core functions. Logic
can also be added so that child records in other tables are deleted when the parent
is removed.

Security and the Preferred Way of Getting
Request Variables
Since Joomla! is a web application deployed within public reach, it is necessary
to protect it against security vulnerabilities. Joomla! employs a common
method of making sure scripts are only called within the framework and not
randomly executed.

Besides unintended script behavior, maliciously submitted data can be used by
hackers to gain access to your database. Joomla! provides functionalities that prevent
attacks of this kind.

Menu Item Control
A noteworthy feature of Joomla! is that navigation is separated from content.
However, if a component is not built to take this into account, it is possible that
website administrators will lose their template and module selections. To take
advantage of the system, it is necessary to use the intended menu item ID number in
generated links.

Also, it is possible to give administrators multiple options for linking to your
component. This will allow the choice of different display options for the front end
without the need to construct long, confusing URLs by hand. These options can
additionally offer admins some simple configuration controls.

Chapter 1

[�]

Controlling the Logic Flow Within a
Component
The same file is always called when a certain component is loaded, but different
functions are called within. Joomla! uses standard variables to determine which
function to execute on each request. There are also classes available to automate the
flow based on these variables.

At a minimum, components are designed to separate the output from the database
and other processing functions. Larger components will separate the logic flow using
a controller, the data access methods using a model, and the output using views.
These conventions make it easier to maintain the code and help the component
perform in a reliable and predictable way.

Configuration Through XML Parameters
Rather than creating a separate table to hold the configuration for an extension,
Joomla! sets aside a place where short values can be held. These variables are
defined through an XML file, which is installed with the extension. The XML file also
provides default values and constraints for these parameters. Saving and retrieving
of these values is automated; handwritten queries are not needed.

Packaging and Distributing
Once all of the code is complete, it is easily packaged for others to use. A listing of all
the files involved is added to the XML file. Any queries needed for table creation are
also included. All the files are then compressed in an archive. The extension is then
ready to be installed on any Joomla!-based website.

Our Example Project
We will build extensions to create, find, promote, and cross-link restaurant reviews.
A component will handle common data points seen across all reviews such as price
range, reservations, cuisine type, and location. Your visitors will be able to search
and sort the reviews, add their own criteria to zero in on their dining options for
the evening.

Some modules will highlight new reviews, drawing the attention of frequent visitors.
Finally, one plug-in will pull pieces of the reviews into feature articles and another
will integrate them into searches.

Joomla! Extension Development: An Overview

[10]

To prepare for this project, install a fresh copy of Joomla! 1.5 on a web server
with PHP and a database (preferably MySQL). If you prefer to exclusively use
one computer to complete this project and do not have a local web server, it will
probably be easier to download and install a bundled and pre-configured package
such as XAMPP (http://www.apachefriends.org). In this way you will be able to
work with all the files on your local file system.

Summary
Joomla! can be extended through components, modules, and plug-ins. This allows
you to add functionalities to a Joomla! site without hacking the core code. Joomla!
can then be maintained and updated without disturbing the custom code.

Getting Started with
Component Development

Before you begin with coding, there are a few files and folders that have to be
created, and also a query that has to be run. This will not only allow you to build the
components but also help you try different features without extensive configuration.
You will also get a quick overview of the way components are organized and
accessed through Joomla!. Finally, you will add some toolbars that work just like
those in other components.

Joomla!'s Component Structure
Joomla! employs a specific naming scheme, which is used by all components. Each
component in the system has a unique name with no spaces. The code is split into
two folders, each bearing the component name prefixed by com_. The component
in this book will be called reviews. Therefore, you will have to create two folders
named com_reviews:

Create one in the folder named components for the front end.
Create one in the folder named components within the administrator
folder for the back end.

When the component is loaded from the front end, Joomla! will look for a file
with the component's unique name ending in a .php extension. Within the
components/com_reviews folder, create the reviews.php file. Similarly, running
it in the back end assumes the presence of a file prefaced with admin. followed
by the component name and ending in .php. Add the file admin.reviews.php in
administrator/components/com_reviews. Leave both the files empty for
the moment.

•

•

Getting Started with Component Development

[12]

Executing the Component
All front-end requests in Joomla! go through index.php in the root directory.
Different components can be loaded by setting the option variable in the URL
GET string. If you install Joomla! on a local web server in a directory titled joomla,
the URL for accessing the site will be http://localhost/joomla/index.php or
something similar. Assuming this is the case, you can load the component's front
end by opening http://localhost/joomla/index.php?option=com_reviews in
your browser. At this point, the screen should be essentially blank, apart from the
common template elements and modules. To make this component slightly more
useful, open reviews.php and add the following code, then refresh the browser:

<?php
defined('_JEXEC') or die('Restricted access');
echo '<div class="componentheading">Restaurant Reviews</div>';
?>

Your screen will look similar to the following:

Chapter 2

[13]

You may be wondering why we called defined() at the beginning of the file.
This is a check to ensure that the code is called through Joomla! instead of being
accessed directly at components/com_reviews/reviews.php. Joomla! automatically
configures the environment with some security safeguards that can be defeated if
someone is able to directly execute the code for your component.

For the back end, drop this code into
administrator/components/com_reviews/admin.reviews.php:

<?php
defined('_JEXEC') or die('Restricted access');
echo 'Restaurant Reviews';
?>

Go to
http://localhost/joomla/administrator/index.php?option=com_reviews
and compare your result to this:

Joomla!'s Division between Front End
and Back End
For all Joomla! components, code empowering the back-end portion is kept away
from the front-end code. In some instances, such as the database table class, the back
end will use certain files from the front end, but otherwise the two are separate.
Security is enhanced as you are less likely to slip the administrative functions into
the front-end code. This is an important distinction as the front end and back end are
similar in structure.

Getting Started with Component Development

[14]

The following folder diagram shows the Joomla! root with the administrator
folder expanded:

Notice that the administrator folder has a structure similar to the root folder. It
is important to differentiate between the two, else you may place your code in the
wrong folder and it will fail to execute until you move it.

Registering Your Component in the
Database
You now know how to access both the front end and back end of the component.
Although you could keep typing in the URLs each time you wanted to execute a
piece of code, this will not be acceptable to your users. Navigation can be provided if
you register the component in the database by adding a row to the components table.

We will perform this registration using the following query. It is assumed that your
database prefix is jos_. If not, replace jos_ with the prefix you chose. If you prefer
to work with direct SQL statements on a command-line interface, enter the following
query in your console:

Chapter 2

[15]

INSERT INTO jos_components (name, link, admin_menu_link,

 admin_menu_alt, 'option', admin_menu_img, params)

VALUES ('Restaurant Reviews', 'option=com_reviews',

 'option=com_reviews', 'Manage Reviews', 'com_reviews',

 'js/ThemeOffice/component.png', '');

If you prefer to use a GUI or web-based database manager such as phpMyAdmin,
enter Restaurant Reviews for name, option=com_reviews for link and
admin_menu_link, Manage Reviews for admin_menu_alt, com_reviews for
option, and js/ThemeOffice/component.png for admin_menu_img. Leave all of
the other fields blank. The fields menuid, parent, ordering, and iscore will default
to 0, while enabled will default to 1.

Getting Started with Component Development

[16]

Adding this record gives the system some basic information about your component.
It states the name you want to use for the component, which can contain spaces
and punctuation. You can put in specific links to go to both the front end and back
end. The image to be used on the Components menu can be specified. Also as the
description in the browser status bar can be made available. It is not necessary to add
this query while developing the component; once you create the basic directories and
files, your component is ready to be executed. However, it does add a menu item
in the back end and makes it possible to add an appropriate link in the front end
without hard coding a URL.

After the record is successfully entered, go to any page in the back end and refresh
it. When you move the mouse cursor over the Components menu you should see the
new option:

Chapter 2

[17]

Now that the component is registered, you can also create a link for the front end.
Go to Menus | Main Menu and click New. From this screen, select Restaurant
Reviews. Enter Reviews as the Name. The following screen will be observed:

Getting Started with Component Development

[18]

Now click Save and go to the front end. You should now see Reviews listed as
an option.

You could just break out your PHP skills and start coding the component,
ensuring all front-end requests go through http://localhost/joomla/index.
php?option=com_reviews and all back-end requests go though http://localhost/
joomla/administrator/index.php?option=com_reviews. Joomla! is flexible
enough to let you do as you please. In some cases, you will have existing code that
you may want to use and you will need to split it into appropriate files. But for
the restaurant reviews, you will start a new Joomla! component from scratch. You
have the opportunity to design everything with Joomla's toolbars, users, database
classes, and libraries in mind. These elements will save you a lot of time once you
understand how they work.

Creating Toolbars
Throughout the back end, all the core components implement toolbars with similar
buttons for saving, deleting, editing, and publishing items. You can use these buttons
in your component so that frequent administrators will have a seamless experience.

To start, create the toolbar.reviews.html.php file in the
administrator/components/com_reviews folder and enter in the following code:

<?php
defined('_JEXEC') or die('Restricted access');
class TOOLBAR_reviews {

Chapter 2

[19]

 function _NEW() {
 JToolBarHelper::save();
 JToolBarHelper::apply();
 JToolBarHelper::cancel();
 }

 function _DEFAULT() {
 JToolBarHelper::title(JText::_('Restaurant Reviews'),
 'generic.png');
 JToolBarHelper::publishList();
 JToolBarHelper::unpublishList();
 JToolBarHelper::editList();
 JToolBarHelper::deleteList();
 JToolBarHelper::addNew();
 }
}
?>

Files containing output codes are usually organized into classes, like the code here
with TOOLBAR_reviews. Each member function here represents a different toolbar.
The class JToolBarHelper contains functions that generate all the HTML necessary
to build toolbars. When desired, you can also add custom HTML output from within
these functions. Be aware that the toolbars lie within HTML tables; you will probably
want to add <td> tags along with your custom navigation.

The toolbars are now defined, but you need to add some code that will decide
which one to display. In the back end, Joomla! automatically loads the file beginning
with the component name and ending in .reviews.php in the upper right-hand
portion of the screen. Add the following code into toolbar.reviews.php in the
administrator/components/com_reviews folder:

<?php
defined('_JEXEC') or die('Restricted access');
require_once(JApplicationHelper::getPath('toolbar_html'));
switch($task)
{
 case 'edit':
 case 'add':
 TOOLBAR_reviews::_NEW();
 break;

 default:
 TOOLBAR_reviews::_DEFAULT();
 break;
}
?>

Getting Started with Component Development

[20]

The line containing require_once(...) uses the getPath() member function of
the JApplicationHelper class. The call to getPath() allows you to call up the
toolbar.reviews.html.php file without committing to a component name. Later,
even if you change the name to 'Restaurants' and also change the filenames, this line
of code will still load the output code for the toolbar with no modification.

You may be wondering why we are creating two files to begin with,
toolbar.reviews.php and toolbar.reviews.html.php. The
preferred coding style among component developers is to keep the
processing logic in a file completely separate from where the actual
output takes place. This makes it easier to add features later and to
potentially share the code with others.

After toolbar.reviews.php loads the file with the output class, you need to decide
which toolbar should be displayed. The request variable $task is automatically
registered in global scope by Joomla! and is used to direct the logic flow within
the component. With your toolbar code in place, refresh the browser in the back
end and go to Restaurant Reviews under Components and you should see the
following screen:

To see the other toolbar, add &task=add to the end of the URL in your browser, then
load it. The toolbar should appear like this:

Your users will certainly not want to add the task variable at the end of the URL as
they navigate through your component. How will they be able to use the second
toolbar then? Each button on the toolbar represents a different task. When one is
clicked, the associated task is added to your form and it is automatically submitted.
Once the appropriate form is in place, a click on the New button from the first screen
will pull up the toolbar seen in the second. Since we do not yet have any forms in the
back end, these toolbar buttons will not function. These will start working in the next
chapter when we build out the rest of the back end.

Chapter 2

[21]

Available Toolbar Buttons
Joomla! allows you to override any button with your own task and label, passing
them as the first and second parameters respectively. The following buttons are
available with the standard distribution of Joomla!:

Getting Started with Component Development

[22]

If you would like to create a custom button that looks and behaves like
the core ones, use the custom() member function of JToolBarHelper,
passing in the task, icon, mouse-over image, and text description as the
respective parameters.

Summary
The basic files necessary to build the component are now in place. The rest of the
Joomla! installation now knows that this component is available for front end and
back end use. By using standard HTML and CSS classes, the component has a
look and feel similar to the other components in the system, making it easy to use
with different templates. Basic toolbars are available to the component and can be
assigned to different screens by using the $task variable.

Back-End Development
Creating and managing reviews is our component's largest task. We will add forms
and database functions to take care of this so that we can start adding reviews.
This will also give us a chance to allow some of our restaurant reviewers to offer
feedback. We will cover the following topics in this chapter:

Creating a database table to hold the reviews
Setting up a basic form for data entry
Processing the data and adding it to the database
Listing the existing reviews
Editing and deleting reviews

Creating the Database Table
Before we set up an interface for entering reviews, we need to create a place in
the database where they will go. We will start with a table where one row will
represent one review in the system. Assuming that your database prefix is
jos_ (check Site | Configuration | Server if you are unsure), enter the following
query into your SQL console:

CREATE TABLE 'jos_reviews'

(

 'id' int(11) NOT NULL auto_increment,

 'name' varchar(255) NOT NULL,

 'address' varchar(255) NOT NULL,

 'reservations' varchar(31) NOT NULL,

 'quicktake' text NOT NULL,

 'review' text NOT NULL,

•

•

•

•

•

Back-End Development

[24]

 'notes' text NOT NULL,

 'smoking' tinyint(1) unsigned NOT NULL default '0',

 'credit_cards' varchar(255) NOT NULL,

 'cuisine' varchar(31) NOT NULL,

 'avg_dinner_price' tinyint(3) unsigned NOT NULL default '0',

 'review_date' datetime NOT NULL,

 'published' tinyint(1) unsigned NOT NULL default '0',

 PRIMARY KEY ('id')

);

If you're using phpMyAdmin, pull up the following screen and enter jos_reviews as
the table name and let it generate 13 fields:

After clicking Go, you will see a grid; fill in details so that it looks like the
following screen:

Chapter 3

[25]

Be sure you make the field id into an automatically incremented primary key:

Creating a Table Class
We could write individual functions to take care of the queries necessary to add,
update, and delete the reviews. However, these are rudimentary functions that
you would prefer not to write. Fortunately, the Joomla! team has already done this
for you. The JTable class provides functions for creating, reading, updating, and
deleting records from a single table in the database.

To take advantage of JTable, we need to write an extension of it specific to
jos_reviews. In the /administrator/components/com_reviews folder, create
a folder named tables. In this folder, create the review.php file and enter the
following code:

<?php
defined('_JEXEC') or die('Restricted access');
class TableReview extends JTable
{
 var $id = null;
 var $name = null;
 var $address = null;
 var $reservations = null;
 var $quicktake = null;
 var $review = null;
 var $notes = null;
 var $smoking = null;
 var $credit_cards = null;
 var $cuisine = null;
 var $avg_dinner_price = null;
 var $review_date = null;
 var $published = null;
 function __construct(&$db)
 {
 parent::__construct('#__reviews', 'id', $db);
 }
}
?>

Back-End Development

[26]

When we extend the JTable class, we add all the columns of the database table as
member variables and set them to null. Also we override the class constructor: the
__construct() method. At the minimum, our __construct() method will take a
database object as a parameter and will call the parent constructor using the name
of the database table (where #__ is the table prefix), the primary key, and the
database object.

Why use #__ as the Table Prefix?
When writing queries and defining JTable extensions in Joomla!, use
#__ instead of jos_. When Joomla! executes the query, it automatically
translates #__ into the database prefix chosen by the admin. This way,
someone can safely run multiple installations of Joomla! from the same
database. This also makes it possible for you to change the prefix to
anything you like without changing the code. You can hard-code the
names of legacy tables that cannot be renamed to follow this convention,
but you will not be able to offer the multiple installation compatibility.

The TableReview class inherits the bind(), store(), load(), and delete(),
functions among others. These four functions allow you to manage records in the
database without writing a single line of SQL.

Creating the Review Form
With a database table now in place, we need a friendly interface for adding reviews
into it. To start, let's create a form for entering the review data. As we did with the
toolbar files, we want to separate the HTML output from our processing logic. The
PHP code necessary for configuring the form will be in admin.reviews.php while
admin.reviews.html.php will contain the actual HTML output. Open admin.
reviews.php and replace the contents with the following code:

<?php
defined('_JEXEC') or die('Restricted access');
require_once(JApplicationHelper::getPath('admin_html'));
JTable::addIncludePath(JPATH_COMPONENT.DS.'tables');
switch($task)
{
 case 'add':
 editReview($option);
 break;
}
function editReview($option)
{

Chapter 3

[27]

 $row =& JTable::getInstance('Review', 'Table');
 $lists = array();
 $reservations = array(
 '0' => array('value' => 'None Taken',
 'text' => 'None Taken'),
 '1' => array('value' => 'Accepted',
 'text' => 'Accepted'),
 '2' => array('value' => 'Suggested',
 'text' => 'Suggested'),
 '3' => array('value' => 'Required',
 'text' => 'Required'),
);
 $lists['reservations'] = JHTML::_('select.genericList',
 $reservations, 'reservations', 'class="inputbox" '. '', 'value',
 'text', $row->reservations);
 $lists['smoking'] = JHTML::_('select.booleanlist', 'smoking',
 'class="inputbox"', $row->smoking);
 $lists['published'] = JHTML::_('select.booleanlist', 'published',
 'class="inputbox"', $row->published);
 HTML_reviews::editReview($row, $lists, $option);
}
?>

After checking to make sure we're within Joomla!, we use
require_once(JApplicationHelper::getPath('admin_html'))
to include admin.reviews.html.php. The getPath() function takes certain strings
(such as admin_html, front_html, and class) and returns the absolute path to the
corresponding component files. Although we haven't specified the component
name in this line of code, it will still include the appropriate file, even if we
change the name of the component and the HTML file to something else. Using
require_once() ensures the file is added only once.

Although we won't be working with the database right away, we do want to include
our table class. This is accomplished through the addIncludePath() member
function of JTable. The addIncludePath() function automatically includes all the
classes we've defined in files in the tables directory. The filename and path are
constructed to be cross‑platform compatible. Joomla! sets JPATH_COMPONENT to the
absolute path of the back-end code. The constant DS is the operating-system-specific
directory separator to be used.

The switch() statement checks the $task variable and chooses an appropriate
function to run based on the value. Finally, the editReview() function prepares
a few HTML elements before passing them along to our display function
HTML_reviews::editReview().

Back-End Development

[28]

Now create the admin.reviews.html.php file and add the following code:

<?php
defined('_JEXEC') or die('Restricted access');
class HTML_reviews
{
 function editReview($row, $lists, $option)
 {
 $editor =& JFactory::getEditor();
 JHTML::_('behavior.calendar');
 ?>
 <form action="index.php" method="post"
 name="adminForm" id="adminForm">
 <fieldset class="adminform">
 <legend>Details</legend>
 <table class="admintable">
 <tr>
 <td width="100" align="right" class="key">
 Name:
 </td>
 <td>
 <input class="text_area" type="text" name="name"
 id="name" size="50" maxlength="250"
 value="<?php echo $row->name;?>" />
 </td>
 </tr>
 <tr>
 <td width="100" align="right" class="key">
 Address:
 </td>
 <td>
 <input class="text_area" type="text" name="address"
 id="address" size="50" maxlength="250"
 value="<?php echo $row->address;?>" />
 </td>
 </tr>
 <tr>
 <td width="100" align="right" class="key">
 Reservations:
 </td>
 <td>
 <?php
 echo $lists['reservations'];

Chapter 3

[29]

 ?>
 </td>
 </tr>
 <tr>
 <td width="100" align="right" class="key">
 Quicktake:
 </td>
 <td>
 <?php
 echo $editor->display('quicktake', $row->quicktake ,
 '100%', '150', '40', '5') ;
 ?>
 </td>
 </tr>
 <tr>
 <td width="100" align="right" class="key">
 Review:
 </td>
 <td>
 <?php
 echo $editor->display('review', $row->review ,
 '100%', '250', '40', '10') ;
 ?>
 </td>
 </tr>
 <tr>
 <td width="100" align="right" class="key">
 Notes:
 </td>
 <td>
 <textarea class="text_area" cols="20" rows="4"
 name="notes" id="notes" style="width:500px"><?php echo
 $row->notes; ?></textarea>
 </td>
 </tr>
 <tr>
 <td width="100" align="right" class="key">
 Smoking:
 </td>
 <td>
 <?php
 echo $lists['smoking'];
 ?>

Back-End Development

[30]

 </td>
 </tr>
 <tr>
 <td width="100" align="right" class="key">
 Credit Cards:
 </td>
 <td>
 <input class="text_area" type="text" name="credit_cards"
 id="credit_cards" size="50" maxlength="250"
 value="<?php echo $row->credit_cards;?>" />
 </td>
 </tr>
 <tr>
 <td width="100" align="right" class="key">
 Cuisine:
 </td>
 <td>
 <input class="text_area" type="text" name="cuisine"
 id="cuisine" size="31" maxlength="31"
 value="<?php echo $row->cuisine;?>" />
 </td>
 </tr>
 <tr>
 <td width="100" align="right" class="key">
 Average Dinner Price:
 </td>
 <td>
 $<input class="text_area" type="text"
 name="avg_dinner_price"
 id="avg_dinner_price" size="5" maxlength="3"
 value="<?php echo $row->avg_dinner_price;?>" />
 </td>
 </tr>
 <tr>
 <td width="100" align="right" class="key">
 Review Date:
 </td>
 <td>
 <input class="inputbox" type="text" name="review_date"
 id="review_date" size="25" maxlength="19"
 value="<?php echo $row->review_date; ?>" />

Chapter 3

[31]

 <input type="reset" class="button" value="..."
 onclick="return showCalendar('review_date',
 'y-mm-dd');" />
 </td>
 </tr>
 <tr>
 <td width="100" align="right" class="key">
 Published:
 </td>
 <td>
 <?php
 echo $lists['published'];
 ?>
 </td>
 </tr>
 </table>
 </fieldset>
 <input type="hidden" name="id"
 value="<?php echo $row->id; ?>" />
 <input type="hidden" name="option"
 value="<?php echo $option;?>" />
 <input type="hidden" name="task"
 value="" />
 </form>
 <?php
 }
}
?>

Back-End Development

[32]

Point your browser to http://localhost/joomla/administrator/index.
php?option=com_reviews&task=add and you should see the following screen:

Chapter 3

[33]

Our editReview() function takes in a database table row object, an array of
HTML snippets, and the name of the component to generate this screen. This way,
editReview() is almost entirely devoted to the output. Before giving the output,
the function does include a couple of pieces of helper code to power some of the
UI elements.

What does JTML::_() do?
Joomla! includes many HTML generation functions that can be used
to automate the creation of elements such as dropdown lists and
checkboxes. In an effort to speed performance, these functions are only
loaded into memory when needed. This is accomplished though the
_() function, which takes the function name as the first parameter
and passes the remaining parameters (if any) to the desired function.
Functions are organized by type, which is indicated by the first part of
the name passed into the first parameter of _() before the period.

First we pull in an object representing the admin's HTML editor of choice with
the JFactory::getEditor(); function. Just beneath this, we also use
JHTML::_('behavior.calendar') to add JavaScript and CSS includes to the
header; these are necessary for the pop-up calendar on the Review Date field:

class HTML_reviews
{
 function editReview($row, $lists, $option)
 {
 $editor =& JFactory::getEditor();
 JHTML::_('behavior.calendar');

The display() member function of the editor object returns HTML for the chosen
rich text editor. If no rich text editor is desired, this will return a <textarea>
field instead.

 <td>
 <?php
 echo $editor->display('quicktake', $row->quicktake ,
 '100%', '150', '40', '5') ;
 ?>
 </td>

The display() member function takes the following elements: form variable
name, value, width, height, columns, and rows. The last two are for <textarea>
dimensions when the admin has opted not to use an HTML editor.

Back-End Development

[34]

Processing the Data
Once the data in the form is filled out and the admin clicks the Save button, we need
to save the information into the database. To start, create saveReview() in admin.
reviews.php:

function saveReview($option)

{

 global $mainframe;

 $row =& JTable::getInstance('review', 'Table');

 if (!$row->bind(JRequest::get('post')))

 {

 echo "<script> alert('".$row->getError()."');

 window.history.go(-1); </script>\n";

 exit();

 }

 $row->quicktake = JRequest::getVar('quicktake', '', 'post',
 'string', JREQUEST_ALLOWRAW);

 $row->review = JRequest::getVar('review', '', 'post',
 'string', JREQUEST_ALLOWRAW);

 if(!$row->review_date)

 $row->review_date = date('Y-m-d H:i:s');

 if (!$row->store())

 {

 echo "<script> alert('".$row->getError()."');

 window.history.go(-1); </script>\n";

 exit();

 }

 $mainframe->redirect('index.php?option=' .

 $option, 'Review Saved');

}

First, we pull in the global $mainframe and the current database connection. The
$mainframe object has many member functions you can use to control session
variables and headers. We also set $row as an instance of our TableReview class;
the name of the class is assembled from the parameters, with the second acting as a
prefix for the first. Next, we call the bind() member function of $row to load in all of
the variables from the form.

The bind() function takes an associative array as the parameter and attempts to
match all of the elements to member variables of the object. To reduce the risk of SQL

Chapter 3

[35]

injection attacks, we call JRequest::get() to sanitize the values from $_POST. This
process escapes characters that could be used to control the SQL query.

If bind() fails for some reason, we display this as a JavaScript alert and take the user
back to the previous screen.

After binding, we can manipulate the member variables of $row directly. Since the
quicktake and review fields accept HTML content, they need special handling as
the bind() function automatically strips out HTML. To get around this, we use the
getVar() member function of JRequest, passing in the form variable name, the
default value, the request array we wish to pull from, the expected format, and the
JREQUEST_ALLOWRAW flag respectively.

In addition to recaputring the HTML data, we are also able to add default data or
some other automatically generated data after binding. We've set it to fill in the
current date for the review in case it was not chosen.

Finally, we call the store() function, which takes all the member variables and turns
them into an UPDATE or INSERT statement, depending on the value of id. Since we are
creating this record for the first time, it will not have a value for id and so an INSERT
query will be constructed.

If there is an SQL error, we return it back to the user and return the user back to the
previous screen. Frequently, SQL errors at this level can be caused by extraneous
member variables of $row not present in the table class. If you run into a query
error, first check to make sure the spelling of your member variables matches
the spelling of the table columns. Otherwise, if the SQL is successful, we use the
redirect() function from $mainframe to send the user back to the main component
screen with a confirmation message.

At the moment, the switch() statement in admin.reviews.php only processes the
add task. Now that we have a form and function in place, we can add a case to save
our data. Add the highlighted code below to the switch():

switch($task)
{
 case 'add':
 editReview($option);
 break;
 case 'save':

 saveReview($option);

 break;

}

Back-End Development

[36]

Save all your files and go to http://localhost/joomla/administrator/index.
php?option=com_reviews&task=add in your browser. You should now be able to
fill out the form and click Save. You should see a screen similar to the following:

Why Can't I Click the 'New' Button?
The buttons on the toolbar are designed to work with the form named
adminForm. Since this screen does not have a form yet, clicking on any
of the buttons will result in a JavaScript error. Once adminForm is added
with the hidden variable task, the buttons will function as expected.

You can check the results in the jos_reviews database table. If everything works
correctly, a table listing in phpMyAdmin shows the result after you click on Browse.

Creating a List Screen
Since our admins will not have access to phpMyAdmin, we need to build a screen
that lists all of the reviews in the database. To start, add the following function to
admin.reviews.php:

Chapter 3

[37]

function showReviews($option)
{
 $db =& JFactory::getDBO();
 $query = "SELECT * FROM #__reviews";
 $db->setQuery($query);
 $rows = $db->loadObjectList();
 if ($db->getErrorNum()) {
 echo $db->stderr();
 return false;
 }
 HTML_reviews::showReviews($option, $rows);
}

This function loads the data to be displayed, so we get a reference to the current
database connection, then call its member function setQuery(). The setQuery()
function takes the string of a query and stores it for later use, rather than executing
it right away. When we call loadObjectList(), the previously set query is run and
the individual rows in the result are loaded into an array as objects. If we run into an
error, we display it and stop the component.

If all goes well, we pass the array of results into the following member function to be
added to admin.reviews.html.php:

function showReviews($option, &$rows)
{
 ?>
 <form action="index.php" method="post" name="adminForm">
 <table class="adminlist">
 <thead>
 <tr>
 <th width="20">
 <input type="checkbox" name="toggle"
 value="" onclick="checkAll(<?php echo
 count($rows); ?>);" />
 </th>
 <th class="title">Name</th>
 <th width="15%">Address</th>
 <th width="10%">Reservations</th>
 <th width="10%">Cuisine</th>
 <th width="10%">Credit Cards</th>
 <th width="5%" nowrap="nowrap">Published</th>
 </tr>
 </thead>

Back-End Development

[38]

 <?php
 $k = 0;
 for ($i=0, $n=count($rows); $i < $n; $i++)
 {
 $row = &$rows[$i];
 $checked = JHTML::_('grid.id', $i, $row->id);
 $published = JHTML::_('grid.published', $row, $i);
 ?>
 <tr class="<?php echo "row$k"; ?>">
 <td>
 <?php echo $checked; ?>
 </td>
 <td>
 <?php echo $row->name; ?>
 </td>
 <td>
 <?php echo $row->address; ?>
 </td>
 <td>
 <?php echo $row->reservations; ?>
 </td>
 <td>
 <?php echo $row->cuisine; ?>
 </td>
 <td>
 <?php echo $row->credit_cards; ?>
 </td>
 <td align="center">
 <?php echo $published;?>
 </td>
 </tr>
 <?php
 $k = 1 - $k;
 }
 ?>
 </table>
 <input type="hidden" name="option"
 value="<?php echo $option;?>" />
 <input type="hidden" name="task" value="" />
 <input type="hidden" name="boxchecked" value="0" />
 </form>
 <?php
}

Chapter 3

[39]

This function starts by defining a form that points to index.php, with the name set
to adminForm (for JavaScript references). A table with the adminlist class is then
started and headers are added. All the headers are typical, except for the first one
that acts as a "check all" checkbox that automatically selects all the records on
the screen.

Once out of the header, we begin a loop over the rows. The variables $i and $n
are initially set to 0 and the number of rows respectively; the loop runs as long as
there are rows available to display. Once inside the loop, we get a reference to the
current row so we can display the contents. We switch the value of $k back and forth
between 0 and 1; this is used to alternate between two different CSS classes with
slightly different background properties.

Several of the member variables are output directly, but a couple of the columns
warrant special treatment. Using the JHTML::('grid.id'), we can get the HTML
code for a checkbox that will be recognized by the back-end JavaScript. The
JHTML::_('grid.published') function generates an image button based on the
value of the published member variable in the row. When it is set to 1, we get a
"check" image, while a value of 0 yields an "x" image.

Below the table, there are four hidden variables. The first one holds the value for
option so that we are routed to the correct component. The task is made available
so that the JavaScript in the toolbars can set it before submitting the form. When any
of the checkboxes for the records are toggled, boxchecked is set to 1. It is set back
to 0 when all checkboxes are cleared. This aids the JavaScript in processing the list.
Once the HTML output code is in place, update your switch() statement in admin.
reviews.php with the following highlighted code. This will add a default case for
when no task is selected:

switch($task)
{
 case 'add':
 editReview($option);
 break;
 case 'save':
 saveReview($option);
 break;
 default:

 showReviews($option);

 break;

}

Back-End Development

[40]

When you now load http://localhost/joomla/administrator/index.
php?option=com_reviews, a screen similar to the following should appear:

Editing Records
Instead of writing a whole new set of functions for editing records, we can extend the
existing code. In the admin.reviews.php file under editReview() replace:
$row =& JTable::getInstance('Review', 'Table');
 with the following highlighted code:

function editReview($option)
{
 $row =& JTable::getInstance('review', 'Table');
 $cid = JRequest::getVar('cid', array(0), '', 'array');
 $id = $cid[0];
 $row->load($id);

As we did with the saveReview() function, we get a TableReview object to handle
the data for the record. We also pull in the form variable cid, which is an array of
record IDs. Since we only want to edit one record at a time, we select the first ID in
the array and load the corresponding row. While we're in the admin.reviews.php
file, we should add a case for edit to the switch():

 case 'edit':
 case 'add':
 editReview($option);
 break;

Chapter 3

[41]

You need to provide links that the user can click to edit the individual records. In the
admin.reviews.html.php file under HTML_reviews::showReviews(), replace
the function to display the name and add the first two bits of highlighted code as
seen below:

 jimport('joomla.filter.output');
 $k = 0;
 for ($i=0, $n=count($rows); $i < $n; $i++)
 {
 $row = &$rows[$i];
 $checked = JHTML::_('grid.id', $i, $row->id);
 $published = JHTML::_('grid.published', $row, $i);
 $link = JOutputFilter::ampReplace('index.php?option=' .
 $option . '&task=edit&cid[]='. $row->id);
 ?>
 <tr class="<?php echo "row$k"; ?>">
 <td>
 <?php echo $checked; ?>
 </td>
 <td>
 <a href="<?php echo $link; ?>">
 <?php echo $row->name; ?>
 </td>
 <td>
 <?php echo $row->address; ?>
 </td>
 <td>
 <?php echo $row->reservations; ?>
 </td>
 <td>
 <?php echo $row->cuisine; ?>
 </td>
 <td>
 <?php echo $row->credit_cards; ?>
 </td>
 <td align="center">
 <?php echo $published;?>
 </td>

To adhere to XHTML compliance, we need to make sure ampersands are represented
by the code &. We do this using the ampReplace() function. It is a member
of the JOutputFilter class, which is loaded with the call to jimport('joomla.
filter.output'). Joomla! has many different libraries for things such as XML
processing and RSS output. Instead of loading the full set of libraries each time
Joomla! loads, we use jimport() to load the code only where it is needed.

Back-End Development

[42]

You will also have to update the toolbar code. First, go to the switch()in the
toolbar.reviews.php file and check for the 'edit' case just above 'add':

 case 'edit':
 case 'add':
 TOOLBAR_reviews::_NEW();
 break;

Now that the edit function is built, we can add an edit button that will
allow you to alternatively check boxes rather than click the links. Go to the
toolbar.reviews.html.php file and check for the following line in
TOOLBAR_reviews::_DEFAULT():

 JToolBarHelper::unpublishList();
 JToolBarHelper::editList();
 JToolBarHelper::deleteList();

Save all your files and then refresh the page http://localhost/joomla/
administrator/index.php?option=com_reviews. The record should now appear
with a link. Click this link and you should get a screen that appears similar to
the following:

Chapter 3

[43]

You may have noticed the Apply button in the toolbar on the edit screen. This is
intended to allow people to save their progress and continue editing the record. In
order to make this button function as intended, we will have to make two changes in
the admin.reviews.php file. Modify the switch() as follows:

 case 'apply':

 case 'save':

 saveReview($option, $task);

 break;

Add the following highlighted parameter to the function definition:

function saveReview($option, $task)

Then change the last line of saveReview() to the following code that checks the
current $task:

 switch ($task)

 {

 case 'apply':

 $msg = 'Changes to Review saved';

 $link = 'index.php?option=' . $option .

 '&task=edit&cid[]='. $row->id;

 break;

 case 'save':

 default:

 $msg = 'Review Saved';

 $link = 'index.php?option=' . $option;

 break;

 }

 $mainframe->redirect($link, $msg);

Deleting Records
Adding the delete functionality is relatively simpler. Add the following case to the
switch() in the admin.reviews.php file:

 case 'remove':

 removeReviews($option);

 break;

Back-End Development

[44]

Also add the removeReviews() function:

function removeReviews($option)
{
 global $mainframe;
 $cid = JRequest::getVar('cid', array(), '', 'array');
 $db =& JFactory::getDBO();
 if(count($cid))
 {
 $cids = implode(',', $cid);
 $query = "DELETE FROM #__reviews WHERE id IN ($cids)";
 $db->setQuery($query);
 if (!$db->query())
 {
 echo "<script> alert('".$db->getErrorMsg()."');
 window.history.go(-1); </script>\n";
 }
 }
 $mainframe->redirect('index.php?option=' . $option);
}

We extract the cid form variable again and check to see if there are any ids in that
array. If there are, we build a string that separates individual ids with commas, and
then use this string to build a delete query. Unless there is an error while executing
the query, we redirect the user back to the list screen.

Summary
We now have a fully functional back end for entering our restaurant reviews in the
back end of Joomla!. We've saved ourselves from writing routine SQL statements by
extending the JTable class. The HTML output class is now in place and it generates
add, edit, and list screens for the back end. These screens take advantage of back-end
JavaScript to interact with the toolbar.

Functions have been added to work with saving, editing, and deleting records. We
call these functions by switching on the task variable. We can now get someone to
start doing data entry while we build the rest of the component.

Front-End Development
Now that the reviewers have added some data in the back end, they're anxious to
see how their reviews will appear to the visitors. While we're still working on the
back end, we will learn the following about the front-end portion visible to the
outside world:

Listing the reviews
Generating search-engine friendly links
Displaying a review
Adding comments
Displaying comments

Listing the Reviews
In Chapter 2 (refer to the section Executing the Component) when we follow the link
http://localhost/joomla/index.php?option=com_reviews, we get the
following screen:

•
•
•
•
•

Front-End Development

[46]

We will fill this screen with a list containing links pointing to the individual reviews
that we had added to the database so that when visitors load the site they can
navigate through the reviews.

Start by going to the /components/com_reviews directory and insert the following
code into the reviews.php file:

jimport('joomla.application.helper');
require_once(JApplicationHelper::getPath('html'));
JTable::addIncludePath(JPATH_ADMINISTRATOR.DS.
 'components'.DS.$option.DS.'tables');
switch($task)
{
 default:
 showPublishedReviews($option);
 break;
}
function showPublishedReviews($option)
{
 $db =& JFactory::getDBO();
 $query = "SELECT * FROM #__reviews WHERE
 published = '1' ORDER BY review_date DESC";
 $db->setQuery($query);
 $rows = $db->loadObjectList();
 if ($db->getErrorNum())
 {
 echo $db->stderr();
 return false;
 }
 HTML_reviews::showReviews($rows, $option);
}

In a similar way to the back end, the code
require_once(JApplicationHelper::getPath('html')); includes in the
reviews.html.php file. We pass
JPATH_ADMINISTRATOR.DS.'components'.DS.$option.DS.'tables' into
Jtable::addIncludePath(); to pull in the table class we wrote for the
administrator portion in the previous chapter. Finally, the switch() function is set
with a default case, which calls a function to display all the published reviews. The
query in this function ensures that only the published reviews are loaded and that
these are reverse‑chronologically ordered by the review date.

Chapter 4

[47]

Before we reload the page, we need to add the HTML_reviews class for the front end.
In the /components/com_reviews folder, create the file reviews.html.php:

<?php
class HTML_reviews
{
 function showReviews($rows, $option)
 {
 ?><table><?php
 foreach($rows as $row)
 {
 $link = 'index.php?option=' .
 $option . '&id=' . $row->id . '&task=view';
 echo
 '<tr>
 <td>
 ' . $row->name . '
 </td>
 </tr>';
 }
 ?></table><?php
 }
}
?>

The previous code starts by defining the HTML_reviews class. All our output
functions for the front end will be enclosed within it. The showReviews() function
takes a set of database result object rows and the current component name. After
starting a table, the function loops through the database results and adds a link for
each row.

Front-End Development

[48]

Save all your files and hit refresh in your browser. You should now see a listing of all
the reviews in the system:

Displaying a Review
If you were to click on any of the links at the moment, you would simply see the
same screen again as we have not yet coded anything to handle the view task. For
this, add the following function to the reviews.php file:

function viewReview($option)
{
 $id = JRequest::getVar('id', 0);
 $row =& JTable::getInstance('review', 'Table');
 $row->load($id);
 if(!$row->published)
 {
 JError::raiseError(404, JText::_('Invalid
 ID provided'));
 }
 HTML_reviews::showReview($row, $option);
}

First, we pull the id desired from the request by using getVar(), which checks the
variable for different types of attacks. Externally supplied data must be handled
cautiously, especially when dealing with publicly accessible websites. Consistent use
of getVar() in our code will provide a reasonable layer of security. If the value for
id is missing or unsuitable, the default of 0 provided in the second parameter will be
used instead.

Chapter 4

[49]

Next, we get an instance of the table class from the back end. After loading the row
corresponding to the id, we perform a quick check to make sure that the chosen
review is published. If it isn't, we use the raiseError() member function of JError
to provide a 404 - Page could not be found message.

This check ensures that visitors do not type in random IDs to pull up reviews that are
still in progress. Conveniently, it will also fail if the record doesn't exist.

The viewReview() function will do everything necessary to load a requested review,
but we still need to add code to call this function. Add this highlighted case of view
to the switch on $task:

switch($task)
{
 case 'view':

 viewReview($option);

 break;

 default:
 showPublishedReviews($option);
 break;

We also need to create a display function in our output class. Add the showReview()
function to HTML_reviews in the reviews.html.php file:

function showReview($row, $option)
{

 ?>
 <p class="contentheading"><?php echo $row->name; ?></p>

Front-End Development

[50]

 <p class="createdate"><?php echo JHTML::Date
 ($row->review_date); ?></p>
 <p><?php echo $row->quicktake; ?></p>
 <p>Address: <?php echo $row->address; ?></p>
 <p>Cuisine: <?php echo $row->cuisine; ?></p>
 <p>Average dinner price: $<?php echo
 $row->avg_dinner_price; ?></p>
 <p>Credit cards: <?php echo
 $row->credit_cards; ?></p>
 <p>Reservations: <?php echo
 $row->reservations; ?></p>
 <p>Smoking: <?php
 if($row->smoking == 0)
 {
 echo "No";
 }
 else
 {
 echo "Yes";
 }
 ?></p>
 <p><?php echo $row->review; ?></p>
 <p>Notes: <?php echo $row->notes; ?></p>
 <?php $link = 'index.php?option=' . $option ; ?>
 <a href="<?php echo $link; ?>">< return to the reviews
 <?php
}

The showReview() function takes a single database row as an object and the name
of the component, as parameters. Most of the columns of the row are just displayed
with HTML formatting; most of the logic has already occurred. The column smoking
is tested and turned into a Yes or No appropriately. The call to the JHTML::Date()
function formats the timestamp from the database into the locally preferred style.
Style classes contentheading and createdate are used throughout Joomla!
templates; by using them, our component blends in with the rest of the site. Finally,
we link back to the review listing.

Chapter 4

[51]

After saving all the files, click one of the review links again and you should see a
nicely formatted page.

Generating Search-Engine Friendly Links
At this point of time the links to our reviews (http://localhost/joomla/index.
php?option=com_reviews&id=1&task=view&Itemid=1) appear as long GET
strings. Our critics mentioned that they hate seeing links like these. Also, these
links are not very helpful for search engines attempting to index our site. It would
be preferable to have a link like: http://www.ourdomain.com/reviews/view/1
instead. To accomplish this, we will define a route to both generate and decode
Search-Engine Friendly (SEF) links. Before we write any code, we
will have to go to the administrator back end and enable SEF links. Go to
Site | Configuration and make sure Search Engine Friendly URLs is set to Yes. If

Front-End Development

[52]

you're using Apache as your webserver and have mod_rewrite enabled, you
can also set Use mod_rewrite to Yes; this will entirely remove index.php from
your URLs. With mod_rewrite enabled, the SEO Settings portion of your Global
Configuration screen should look like the following:

If you cannot use mod_rewrite with your configuration, the SEF links
will still be built, but will have index.php in the middle, for example:
http://www.yoursite.com/index.php/search/engine/
friendly/link.

Click Save to change the configuration. If you're using mod_rewrite, make sure
you rename htaccess.txt to .htaccess. If you get a message saying that your
configuration file is unwritable, open the configuration.php file in the Joomla! root
and set the $sef member variable of JConfig to 1 instead of 0.

Building URL Segments
When creating internal links while building a page in Joomla!, components and
modules will call the JRoute::_() function. This function takes a relative link
as the parameter and returns a SEF version of the link. To build this version,
JRoute::_() first parses the relative link into an array, then removes the option
element and adds its value as the first segment of the new URL. The function will
then look for router.php in the component directory with the same name as
option. If router.php is found, it will be included and the function beginning with
the component name and ending with BuildRoute() will be called; in our case,
ReviewsBuildRoute(). To create this function, go back to the /components/com_
reviews folder and create the file router.php. Fill the file with the following code:

<?php
defined('_JEXEC') or die('Restricted access');
function ReviewsBuildRoute(&$query)
{
 $segments = array();
 if (isset($query['task']))
{
 $segments[] = $query['task'];

Chapter 4

[53]

 unset($query['task']);
 }
 if(isset($query['id']))
 {
 $segments[] = $query['id'];
 unset($query['id']);
 }
 return $segments;
}

?>

When JRoute::_() determines that the link it is processing is to a restaurant review,
ReviewsBuildRoute() will be called and an array of the parsed URL (without the
option element) will be passed in. To finish building the SEF link, we need to return
an ordered array of the rest of the URL segments. First, we set $segments as an empty
array. Next, we test the $query array to see if the task element is present. If so, we
add the value of task as the first element of $segments and then remove task from
$query. Next, we do the same process with id. Finally, we return $segments so that
JRoute::_() can finish building the URL.

There are two methods involved in the way this function is written that are crucial
to getting SEF URLs correctly built. First, the $query array must be passed in by
reference (preceded by & in the function definition). As we build the segments, we
remove the processed elements from the $query array. Any elements left in $query
after our function will be processed back into the URL and appear similar to GET
elements. If we do not pass in $query by reference, the calls to unset() will only
effect our local copy and all of the URL elements will appear after the SEF segments.

Besides correctly handling $query, the ordering of the elements in $segments
matters. Since SEF URLs do not have any way of identifying the elements that the
values are intended to set, the only way we can reliably map our values is to rely on
a predefined order. When we return $segments, JRoute::_() will add each element
from this array to the URL, separating them by slashes. If there are any variables left
in $query, these will be added to the end of the URL in GET string style.

Although we now have router.php in place with a function that will generate SEF
URLs, our component's output functions are not set to use it. Open
/components/com_reviews/reviews.html.php and check for the highlighted code
in the showReviews() member function of HTML_reviews:

foreach($rows as $row)
{

Front-End Development

[54]

 $link = JRoute::_('index.php?option=' . $option . '&id=' .
 $row->id . '&task=view');

 echo '<tr><td>' .
 $row->name . '</td></tr>';

}

Also check for the following highlighted code in HTML_reviews::showReview():

<p>Notes: <?php echo $row->notes; ?></p>
<?php $link = JRoute::_('index.php?option=' . $option); ?>

<a href="<?php echo $link; ?>">< return to the reviews

The component will now generate SEF URLs according the pattern we set in
ReviewsBuildRoute().

Parsing URL Segments
If you attempt to click on one of the reviews right now, you will get a message like
"Fatal error: Call to undefined function reviewsParseRoute()". In addition to a
function generating SEF URLs for reviews, we need a function capable of decoding
these URLs. Go back to /components/com_reviews/router.php and add the
following function:

function ReviewsParseRoute($segments)
{
 $vars = array();
 $vars['task'] = $segments[0];
 $vars['id'] = $segments[1];
 return $vars;
}

Once Joomla! determines that the page request is intended for the reviews
component, it will call BuildParseRoute() and pass in an array of the relevant
URL segments. These segments are ordered the same way we set them in
ReviewsBuildRoute(). We initialize an array $vars to hold the variables we return.
Then we set the task and id elements of this array to the first and second elements
of $segments respectively. Finally, we return the array, which Joomla! in turn sets as
request variables. This way, the entire routing process is transparent to the rest of the
code: all of the request variables you would normally expect to be present under a
conventional script call will be there.

Chapter 4

[55]

Save router.php and try clicking on some of the links and pay attention
to the location bar in your browser. You should now notice URLs like
http://www.oursite.com/reviews/view/1 or
http://www.oursite.com/index.php/reviews/view/1. If the URLs look like
http://www.oursite.com/component/reviews/view/1, this just means that you
followed a non-SEF URL; this will clear up as you navigate around.

Adding Comments
Most visitors will take our word for it when we say that a restaurant is great (or
that it isn't). However, there may be a few who disagree. Why not give them an
opportunity to leave comments about their experiences with the restaurant? We'll
need a place to store them, so enter the following SQL command into your
database console:

CREATE TABLE 'jos_reviews_comments' (

 'id' int(11) NOT NULL auto_increment,

 'review_id' int(11) NOT NULL,

 'user_id' int(11) NOT NULL,

 'full_name' varchar(50) NOT NULL,

 'comment_date' datetime NOT NULL,

 'comment_text' text NOT NULL,

 PRIMARY KEY ('id')

)

If you're using phpMyAdmin, pull up the following screen and enter
jos_reviews_comments as the table name and 6 in the Number of fields section:

Front-End Development

[56]

After clicking Go, a grid is displayed; fill in details so that it looks like the
following screen:

Be sure you make the field id into an automatically incremented primary key:

We also want to add another database class to handle the basic functions. Since we
already have the class for the reviews themselves in administrator/components/
com_reviews/tables, we will add the second one here as well. Create the
comment.php file and add the following TableComment class, making sure that
each column in the table is represented as a member variable:

<?php
defined('_JEXEC') or die('Restricted access');
class TableComment extends JTable
{
 var $id = null;
 var $review_id = null;
 var $user_id = null;
 var $full_name = null;
 var $comment_date = null;
 var $comment_text = null;
 function __construct(&$db)
 {
 parent::__construct('#__reviews_comments',
 'id', $db);
 }
}
?>

Chapter 4

[57]

Now that we've established a place to hold the comments, a form should be added so
that people can enter their comments in. Open the reviews.html.php file and add
the following function to HTML_reviews:

function showCommentForm($option, $review_id, $name)
{
 ?>

 <form action="index.php" method="post">
 <table>
 <tr>
 <td>
 Name:
 </td>
 <td>
 <input class="text_area" type="text" name="full_name"
 id="full_name" value="<?php echo $name; ?>" />
 </td>
 </tr>
 <tr>
 <td>
 Comment:
 </td>
 <td>
 <textarea class="text_area" cols="20" rows="4"
 name="comment_text" id="comment_text"
 style="width:500px"></textarea>
 </td>
 </tr>
 </table>
 <input type="hidden" name="review_id"
 value="<?php echo $review_id; ?>" />
 <input type="hidden" name="task"
 value="comment" />
 <input type="hidden" name="option"
 value="<?php echo $option; ?>" />
 <input type="submit" class="button" id="button"
 value="Submit" />
 </form>
 <?php
}

Front-End Development

[58]

The showCommentForm() function takes the current component's name, the id of
the review we're displaying, and a name as parameters. The Name is already filled
in the form so that logged-in users do not have to retype it. There is a link return
to the reviews, which routes us back to the reviews component. The task is set to
comment so that the component records the comment. To make sure we attach the
comment to the right review, review_id is set to the current one. We would like to
display the form just beneath the review, so add the following highlighted code to
the viewReview() function in the reviews.php file:

if(!$row->published)
{
 JError::raiseError(404, JText::_('Invalid ID provided'));
}
HTML_reviews::showReview($row, $option);
$user =& JFactory::getUser();

if($user->name)

{

 $name = $user->name;

}

else

{

 $name = '';

}

HTML_reviews::showCommentForm($option, $id, $name);

Before calling the HTML output function, we need to get the name of the currently
logged-in user (if present). The code $user =& Jfactory::getUser(); sets $user as
a reference to an object for the currently logged-in user. If the user's full name is set
in the name member variable, we capture this value in $name, otherwise $name is set
to a blank string.

Chapter 4

[59]

Save all your files and reload the review. If you are logged in to the front end, your
screen should look like the screenshot below. If you are not logged in, the form will
be displayed, but the Name field will not be filled.

Front-End Development

[60]

Before we attempt to fill in and submit the comment form, we need to add the
code that will process the input and insert it into the database. Add the following
highlighted code to the switch in the reviews.php file:

switch($task)
{
 case 'view':
 viewReview($option);
 break;
 case 'comment':

 addComment($option);

 break;

 default:
 showPublishedReviews($option);
 break;
}

Then add the addComment() function to the same file:

function addComment($option)
{
 global $mainframe;
 $row =& JTable::getInstance('comment', 'Table');
 if (!$row->bind(JRequest::get('post')))
 {
 echo "<script> alert('".$row->getError()."');
 window.history.go(-1); </script>\n";
 exit();
 }
 $row->comment_date = date('Y-m-d H:i:s');
 $user =& JFactory::getUser();
 if($user->id)
 {
 $row->user_id = $user->id;
 }
 if (!$row->store())
 {
 echo "<script> alert('".$row->getError()."');
 window.history.go(-1); </script>\n";
 exit();
 }
 $mainframe->redirect('index.php?option=' .
 $option . '&id=' . $row->review_id .
 '&task=view', 'Comment Added.');
}

Chapter 4

[61]

Most of this code should look familiar at this point. We get a reference to the current
user object to get the user's ID and set it in our database table. At the moment, we're
allowing both logged in and anonymous comments, but recording this now will give
us the flexibility to track the registered users later. When the visitor is not logged in,
$user will be empty and the user_id column will consequently default to 0. Just
before storing, we set comment_date to the current date and time. The rest of the
function binds, stores, and redirects in the way the review records do in the
back end.

Displaying Comments
After saving the code files, you will be able to submit the form and return to the
review. However, nothing will appear to happen as we do not have the code in place
to display the comments. On other websites, you will often see that the content is
directly followed by the comments, which are also followed by a form for adding
more comments. We will follow the same style. Add the following highlighted code
to the reviews.php file, which will get all the comments from the database, go
through them, and then output each one:

HTML_reviews::showReview($row, $option);
$db =& JFactory::getDBO();
$db->setQuery("SELECT * FROM #__reviews_comments

 WHERE review_id = '$id'");

$rows = $db->loadObjectList();

foreach($rows as $row)

{

 HTML_reviews::showComment($row);

}

$user =& JFactory::getUser();

Also add the corresponding function in reviews.html.php, which outputs a single
comment:

function showComment($row)
{
 ?>

 <p><?php echo $row->full_name;
 ?> <?php
 echo JHTML::Date($row->comment_date);
 ?></p>
 <p><?php echo $row->comment_text; ?></p>
 <?php
}

Front-End Development

[62]

Once you've added a comment or two, refresh the review detail page and you should
see a screen like the following:

Chapter 4

[63]

Summary
Our review site is developing successfully. Our reviewers' curiosities are being
satisfied and they're beginning to get excited over the concept of being able to
publish their contents consistently. We've also added some user interaction so that
our visitors can agree or disagree with the reviewers and feel that they're part of
the site. The links to our reviews are now more readable and ready to be crawled
by search engines. This front end is a starting point from where we can add more
features to make the site more enticing.

Module Development
We now have an efficient system for managing the reviews and taking in comments.
However, visitors have to go to the component to see the reviews. The front page of
our site will probably have a few articles introducing the site, but it would be nice if
we could pull the content directly from the reviews and display them there as well.
This is where modules can help; you can use them to fetch and display data almost
anywhere on the page. In this chapter, we will cover the following topics on
module development:

Registering the module in the database
Getting and setting parameters
Centralizing data access and output using helper classes
Selecting display options using layouts
Displaying the latest reviews
Displaying a random review

Registering the Module in the Database
As with the component, we will have to register the module in the database so that
it can be referenced in the back end and used effectively. Entering a record into the
jos_modules table will take care of this. Open your database console and enter the
following query:

INSERT INTO jos_modules (title, ordering,

 position, published, module, showtitle, params)

 VALUES ('Restaurant Reviews', 1, 'left', 1,

 'mod_reviews', 1, 'style=simple\nitems=3\nrandom=1');

•

•

•

•

•

•

Module Development

[66]

If you're using phpMyAdmin, enter the fields as in the following screen:

If you refresh the front end right after entering the record in jos_modules, you'll
notice that the module doesn't appear, even though the published column is set
to 1. To fix this, go to Extensions | Module Manager in the back end and click the
Restaurants Reviews link. Under Menu Assignment, select All and click Save.

Chapter 5

[67]

Module Development

[68]

In the front end, the left-hand side of your front page should look similar to
the following:

Creating and Configuring a Basic Module
Modules are both simple and flexible. You can create a module that simply outputs
static text or one that queries remote databases for things like weather reports.
Although you can create rather complex modules, they're best suited for displaying
data and simple forms. You will not typically use a module for complex record or
session management; you can do this through a component or plug-in instead.

To create the module for our reviews, we will have to create a directory
mod_reviews under /modules. We will also need to create the mod_reviews.php file
inside mod_reviews. To start, we'll create a basic module that displays links to the
most recent reviews. In the mod_reviews.php file, add the following code:

<?php
defined('_JEXEC') or die('Restricted access');

Chapter 5

[69]

$items = $params->get('items', 1);
$db =& JFactory::getDBO();
$query = "SELECT id, name FROM #__reviews WHERE
 published = '1' ORDER BY review_date DESC";
$db->setQuery($query, 0, $items);
$rows = $db->loadObjectList();
foreach($rows as $row)
{
 echo '<a href="' . JRoute::_('index.php?option=com_reviews&id='
 . $row->id . '&task=view') . '">' . $row->name .
 '
';
}
?>

When you save the file and refresh the homepage, your module should look similar
to the following:

When the module is loaded, the $params object is pulled into scope and can be
used to get and set the parameters. When we added the row into jos_modules, the
params column contained three values: one for items (set to 3), one for style (set to
simple), and another for random (set to 1). We set $items to the parameter items
using the get() member function, defaulting to 1 if no value exists.

If desired, you can use the member function set($name, $value) to
override or add a parameter for your module.

After getting a database object reference, we write a query to select the id and name
form jos_reviews and order reverse chronologically by the published date. We use
the second and third parameters of setQuery() to generate a LIMIT clause that is
automatically added to the query. This ensures that the correct syntax is used for the
database type. Once the query is built, we load all the relevant database rows, go
through them, and provide a link to each review.

Module Development

[70]

Recruiting Some Helpers
We would like to have our module do more than display links to the reviews. It
would be helpful to include a summary of the review along with each link or have
the opportunity to display a review at random. However, the way we have it coded
currently is not sufficient to handle different scenarios efficiently. To fix this, we
will centralize the data functions into a helper class. Create the helper.php file in
/modules/mod_reviews and add the following code:

<?php
defined('_JEXEC') or die('Restricted access');
class modReviewsHelper
{
 function getReviews(&$params)
 {
 $items = $params->get('items', 1);
 $db =& JFactory::getDBO();
 $query = "SELECT id, name, quicktake FROM #__reviews
 WHERE published = '1' ORDER BY review_date DESC";
 $db->setQuery($query, 0, $items);
 $rows = $db->loadObjectList();
 return $rows;
 }
 function renderReview(&$review, &$params)
 {
 $link = JRoute::_
 ("index.php?option=com_reviews&task=view&id=" .
 $review->id);
 require(JModuleHelper::getLayoutPath
 ('mod_reviews', '_review'));
 }
}
?>

The function getReviews() performs the same database actions as the original
module, except that it returns the rows instead of going through them. This way, we
separate the database functionality from the display logic. The quicktake column
has been added to the query to gather the content necessary for longer review
display formats.

Chapter 5

[71]

We're going to use renderReview() to output single reviews. To create the link
to a review, we pass index.php?option=com_reviews&task=view&id= and the
review id into Jroute::_() to make our links search engine friendly. Finally, we
use require() and the getLayoutPath() member function of JModuleHelper to
include the _review template we're about to create.

Try Some Different Layouts
The helper class does not produce any output itself. Instead, renderReview()
formats the link and then calls the getLayoutPath() member function in
JModuleHelper to include a layout file named _review.

To create this file, make the folder tmpl under /modules/mod_reviews, create
_review.php inside tmpl, and then add the following line of code:

<?php defined('_JEXEC') or die('Restricted access'); ?>
<a href="<?php echo $link ?>"><?php echo $review->name; ?>

The underscore at the beginning of _review is a convention to remind us that the
layout is for internal use; it is not offered as a choice to the admin. In addition to
this internal layout, we can create other layouts as different display options. To
start, we will create one named default. Add the default.php file in /modules/
mod_reviews/tmpl and add the following code:

<?php
defined('_JEXEC') or die('Restricted access');
foreach ($list as $review){
 modReviewsHelper::renderReview($review, $params);
}
?>

Notice that this layout cycles through a list of reviews, calling the helper class
function that prepares single reviews for display, which in turn loads in the _review
layout. Using the same method, we will also create a bulleted layout. Create the
bulleted.php file in /modules/mod_reviews/tmpl and add the following code to
create the links as a bulleted list:

<?php defined('_JEXEC') or die('Restricted access'); ?>

<?php
foreach ($list as $review)
{
 echo "";
 modReviewsHelper::renderReview($review, $params);
 echo "";

Module Development

[72]

}
?>

The bulleted layout uses the same basic logic as the default layout; the only
difference is that it wraps the results in bullets. Both options ultimately load the _
review layout via the helper function, ensuring that the link formatting is consistent
across layouts.

We now have two different display options and a helper class, but none of this code
is yet accessible by the module. Open mod_reviews.php and replace the contents
with the following code:

<?php
defined('_JEXEC') or die('Restricted access');
require(dirname(__FILE__).DS.'helper.php');
$list = modReviewsHelper::getReviews($params);
require(JModuleHelper::getLayoutPath('mod_reviews'));
?>

The first require() call pulls in the file for the helper class we just wrote. Next,
we pull in a sorted set of recent reviews. Finally, we use getLayoutPath() to pull
in a display layout. When no second parameter is specified for getLayoutPath(),
default is assumed.

Save all the open files and refresh the front page in your browser. The module
should look the same as in the last screenshot. Now, go back to mod_reviews.php
and edit the call to getLayoutPath() so that the bulleted layout is called instead
of default:

require(JModuleHelper::getLayoutPath('mod_reviews', 'bulleted'));

Save all the files and refresh your browser. The module should now appear similar to
the following:

Chapter 5

[73]

It would be nice if we could display a small portion of the review along with each
link. Go back to /modules/mod_reviews/tmpl/_review.php and add the following
highlighted code:

<a href="<?php echo $link ?>"><?php echo $review->name;
 ?>

<p>"<?php echo $review->quicktake ?>"</p>

Refresh your browser. If you entered something in the Quicktake field in the back
end when editing your reviews, you should see something like the following:

Module Development

[74]

Go back to mod_reviews.php and set the second parameter of getLayoutPath() to
default. After saving the file and refreshing the browser, you should see the same
reviews and quotes as before, only without the bullets. While the layout is changing,
the output from _review is staying constant.

Mixing it Up
Our module is great at highlighting the latest opinions of our diners, but our
frequent visitors may want the past reviews. Let's fix that with some adjustments to
the module. Replace the line in mod_reviews.php where the $list function is set
with the highlighted code:

<?php
defined('_JEXEC') or die('Restricted access');
require(dirname(__FILE__).DS.'helper.php');
$random = $params->get('random', 0);

if($random)

{

 $list = modReviewsHelper::getRandomReview();

}

else

{

 $list = modReviewsHelper::getReviews($params);

}

Chapter 5

[75]

require(JModuleHelper::getLayoutPath
 ('mod_reviews', 'default'));
?>

Instead of simply pulling all the reviews, we now populate $list based on the
module's parameters. The $params object is automatically placed into a global
scope, pre-loaded with the settings for our module. We use the get() member
function to pull the random parameter into $random, defaulting to 0 when there is no
value. Next, we test the value of $random. If it is non-zero, the getRandomReview()
member function is called, which we will be adding to modReviewsHelper in a
moment. Otherwise, we get the reviews as we did before.

Now that the parameter checking code is in place, open helper.php and add the
following function to the modReviewsHelper class:

function getRandomReview()
{
 $db =& JFactory::getDBO();
 $query = "SELECT id, name, quicktake FROM #__reviews";
 $db->setQuery($query);
 $rows = $db->loadObjectList();
 $i = rand(0, count($rows) - 1);
 $row = array($rows[$i]);
 return $row;
}

The function first gets a reference to the current database connection. The query is set
to load the id, name, and quicktake columns from all rows in the jos_reviews table.
After all the rows have been loaded into $rows, PHP's rand() function is used to get
a random value between 0 and the number of rows less one, inclusive. The variable
$row is then set to an array containing one element: the object found at the randomly
selected index of $rows. It is necessary to wrap $rows[$i] in an array as our output
code is expecting one.

Module Development

[76]

Save the file and refresh your browser. Then refresh it repeatedly. With any luck,
single reviews should appear at random.

Summary
Now that this module is in place, we are able to draw visitors in with content we've
already entered. When updates are made to the reviews, they'll automatically be
reflected in the module. We've implemented a helper class to centralize some of our
data access and display functions. Several different layouts have been added so that
we have multiple choices for display. This module can be used anywhere on the site
and will show our visitors the variety of restaurants we've reviewed.

Expanding the Project
Our components and modules are doing a good job of managing the reviews and
taking in comments. However, there are a lot of modifications we could make to give
our reviewers greater control over the display. Also, now that we have comments,
we need a way of moderating them. We will make the following modifications and
additions in this chapter:

Building data models
Migrating to views
Switching through controllers
Publishing controls for reviews
Pagination for long lists
Managing comments
Additional toolbars

Model, View, Controller: Why?
So far, our component is doing a good job of separating the HTML output from
everything else, making it relatively simpler to go back and change the layout.
However, we can take this separation further to allow more flexibility. Instead of
displaying the reviews in the current flat list, we could create views that would allow
for columns and varying levels of detail. These options could be given to an admin
who would be able to choose the desired view.

To do this, we will recode the component to follow the Model, View, Controller
(MVC) design. Many programmers use MVC as a predictable way of controlling
the logic flow in software. Models are used to define the different ways in which
data can be accessed. Views generate output when given data. Controllers receive
commands and route the software to the corresponding tasks and views.

•

•

•

•

•

•

•

Expanding the Project

[78]

In our MVC implementation, we will create data models to represent information
from the database, views to display our data, and controllers that will merge the two
together and handle any other task.

Building Data Models
Before we separate out our views, we need to build some data models that will
get the information we will display. The front end of the component has two main
screens: one that displays all the reviews and another that displays a single review.
Both of these will need at least one model.

Modeling All Reviews
In the directory /components/com_reviews, create a folder named models. In this
folder, create the all.php file and add the following code:

<?php
defined('_JEXEC') or die('Restricted access');
jimport('joomla.application.component.model');
class ModelReviewsAll extends JModel
{
 var $_reviews = null;
 function getList()
 {
 if(!$this->_reviews)
 {
 $query = "SELECT * FROM #__reviews WHERE published = '1'";
 $this->_reviews = $this->_getList($query, 0, 0);
 }
 return $this->_reviews;
 }
}
?>

First, we import Joomla!'s data model libraries. Next, we declare ModelReviewsAll
as an extension of JModel. Notice that we have Model, followed by the component
name, which is followed by the model name. Following this convention makes it
easier for other components to reference this model when necessary. Once inside the
class, we declare $_reviews as a member variable; the underscore reminds us that
it is a protected variable. Our single member function getList() checks to see if the
list of reviews has been loaded. If not, we build a query to get all published reviews
and send it through the _getList() member function of JModel. Once $_reviews
has been set with the rows, we return them.

Chapter 6

[79]

Why Are the Second and Third Parameters of _getList() Set to 0?
The second and third parameters for _getList() are the start and limit
rows. If we wanted rows 20 through 50, we could set the second and
third parameters to 20 and 30 respectively. Otherwise, _getList()
interprets two zeros as get all rows.

Modeling Individual Reviews
In addition to modeling all published reviews, we also need a model for the
individual reviews. In the models folder, create the review.php file and add the
following code:

<?php
defined('_JEXEC') or die('Restricted access');
jimport('joomla.application.component.model');
class ModelReviewsReview extends JModel
{
 var $_review = null;
 var $_comments = null;
 var $_id = null;
 function __construct()
 {
 parent::__construct();
 $id = JRequest::getVar('id', 0);
 $this->_id = $id;
 }
 function getReview()
 {
 if(!$this->_review)
 {
 $query = "SELECT * FROM #__reviews WHERE
 id = '" . $this->_id . "'";
 $this->_db->setQuery($query);
 $this->_review = $this->_db->loadObject();
 if(!$this->_review->published)
 {
 JError::raiseError(404, "Invalid ID provided");
 }
 }
 return $this->_review;
 }
 function getComments()
 {

Expanding the Project

[80]

 if(!$this->_comments)
 {
 $query = "SELECT * FROM #__reviews_comments WHERE
 review_id = '" . $this->_id . "'";
 $this->_comments = $this->_getList($query, 0, 0);
 }
 return $this->_comments;
 }
}
?>

The same general concepts apply here as in the previous model. We have overridden
the constructor so that we call the original one first, and then set the review id for
the module from the request. Additionally, we have two other protected variables,
which hold the information for the review and the associated comments. Instead of
loading a list of records, getReview() loads only one row. Notice that the database
object is already a protected member of the JModel class. If after loading the review
we discover that it is unpublished, we raise a 404-Page could not be found message.
The getComments() function works almost identically to ModelReviewsAll::
getList(), only querying the #__reviews_comments table instead.

Migrating to Views
Now that our data models are in place, we need some code that will display the
information. So far, the files ending in .html.php have served us well for doing this
task. However, the existing design is rather rigid: you include the HTML output
class and call the screen you want to display. Through the use of views, we can open
these screens up to the admins as choices.

Rather than keeping the entire output within a single file, we will create a separate
folder for views, which will contain sub-folders for the different types of records we
want to present. Within /components/com_reviews, create the views folder. At the
moment, our component has functions for displaying single reviews and comments;
so create two folders under views titled all and review. In each of these folders,
create a folder for templates titled tmpl.

Chapter 6

[81]

Your directory structure should look similar to the following:

Viewing All
Each view can include several templates, but needs a view object to manage these
templates. To make this object for the all reviews view, create the view.html.php file
under components/com_reviews/views/all and add the following code:

<?php
defined('_JEXEC') or die('Restricted access');
jimport('joomla.application.component.view');
class ReviewViewAll extends JView
{
 function display($tpl = null)
 {
 global $option;
 $model = &$this->getModel();
 $list = $model->getList();
 for($i = 0; $i < count($list); $i++)
 {
 $row =& $list[$i];
 $row->link = JRoute::_('index.php?option=' . $option .
 '&id=' . $row->id . '&view=review');
 }
 $this->assignRef('list', $list);
 parent::display($tpl);
 }
}
?>

Expanding the Project

[82]

After importing the core view code and declaring ReviewViewAll as an extension
of JView, we create a member function display() that accepts the name of the
template we wish to use. We get the model currently assigned to this view and
use the getList() member function to get our set of reviews. Before heading to
display the template, we go through these records and add a preformatted link using
JRoute::_() to make them search-engine friendly. We then assign this list as a
template variable and call our template. If no template name is specified, default is
assumed. To create the default template, in components/com_reviews/views/all/
tmpl create default.php and add the following code:

<?php defined('_JEXEC') or die('Restricted access'); ?>
<table>
<?php foreach($this->list as $l): ?>
<tr><td>
<a href="<?php echo $l->link; ?>"><?php echo $l->name; ?>
</td></tr>
<?php endforeach; ?>
</table>

Note that the list variable is added as a member of the current view
object and therefore must be accessed through $this.

Viewing One
The code for displaying an individual review is similar to the code for displaying all
the reviews. In components/com_reviews/views/review create view.html.php
and add the following code:

<?php
defined('_JEXEC') or die('Restricted access');
jimport('joomla.application.component.view');
class ReviewViewReview extends JView
{
 function display($tpl = null)
 {
 global $option, $mainframe;
 $model = &$this->getModel();
 $user =& JFactory::getUser();
 $review = $model->getReview();
 $comments = $model->getComments();
 $pathway =& $mainframe->getPathWay();
 $backlink = JRoute::_('index.php?option=' .
 $option . '&view=all');
 $review->review_date =
 JHTML::Date($review->review_date);

Chapter 6

[83]

 if($review->smoking == 1)
 {
 $review->smoking = "Yes";
 }
 else
 {
 $review->smoking = "No";
 }
 for($i = 0; $i < count($comments); $i++)
 {
 $row =& $comments[$i];
 $row->comment_date =
 JHTML::Date($row->comment_date);
 }
 $pathway->addItem($review->name, '');
 $this->assignRef('review', $review);
 $this->assignRef('comments', $comments);
 $this->assignRef('backlink', $backlink);
 $this->assignRef('option', $option);
 $this->assignRef('name', $user->name);
 parent::display($tpl);
 }
}
?>

In addition to getting variables from the model, we also pull in the object for the
current user as well as the $mainframe object. We use the user object to get the name
of the currently logged-in user and assign this to the name variable. On the $review
object, we format the date and smoking columns to be user readable; we also format
the dates for all the comments. From the $mainframe object, we pull a reference to
the pathway and use the review name to add a breadcrumb. The review text, rows
of comments, a link back to the list of reviews, the current component name, and the
name of the currently logged-in user are all assigned to the view. Finally, we call the
display() member function to output the review.

Creating Breadcrumbs
You can modify the pathway that commonly appears in templates
by using the object returned by $mainframe->getPathWay(). The
member function addItem() allows you to add a breadcrumb with the
title of your choice. The first parameter is the title for the breadcrumb,
while the second parameter is the URL. If you do not wish to turn the
breadcrumb into a link, simply pass a blank string. This can be useful
for hierarchical components where you have a series of subcategories:
you can generate a link to each and then end with the title of the current
record or category.

Expanding the Project

[84]

A link back to the main page is also created and assigned to the view. We
finally display the chosen template after all the variables have been assigned. In
components/com_reviews/views/review/tmpl create default.php and add the
following code:

<?php defined('_JEXEC') or die('Restricted access'); ?>
<p class="contentheading">
 <?php echo $this->review->name; ?>
</p>
<p class="createdate">
 <?php echo $this->review->review_date; ?>
</p>
<p>
 <?php echo $this->review->quicktake; ?>
</p>
<p>
Address: <?php echo $this->review->address; ?>
</p>
<p>Cuisine:
 <?php echo $this->review->cuisine; ?>
</p>
<p>Average dinner price:
 $<?php echo $this->review->avg_dinner_price; ?>
</p>
<p>Credit cards:
 <?php echo $this->review->credit_cards; ?>
</p>
<p>Reservations:
 <?php echo $this->review->reservations; ?>
</p>
<p>Smoking:
 <?php echo $this->review->smoking ?>
</p>
<p>
 <?php echo $this->review->review; ?>
</p>
<p>Notes:
 <?php echo $this->review->notes; ?>
</p>
<a href="<?php echo $this->backlink; ?>"><
 return to the reviews

<?php if(count($this->comments)) : ?>

 <?php foreach($this->comments as $comment): ?>
 <p><?php echo $comment->full_name;
 ?> <?php echo $comment->comment_date;

Chapter 6

[85]

 ?></p>
 <p>
 <?php echo $comment->comment_text; ?>
</p>
 <?php endforeach; ?>
<?php endif; ?>

<?php echo $this->loadTemplate('form'); ?>

This file is primarily composed of HTML but we use PHP calls where we want
to output variables. The name, review_date, quicktake, address, cuisine,
credit_cards, reservations, smoking, review, and notes are all merely echoed
out. The backlink is embedded in an anchor tag. Before attempting to display
comments, we first check to make sure that we have at least one. If so, we go through
the comments array, displaying the full_name, comment_date, and comment_text
for each comment. Notice that at the bottom we have a call to load another template
for rendering the comments form. This allows us to keep the presentation logic for
the review itself separate from the form.

However, we need to add this other template as well. In com_reviews/views/
review/tmpl create default_form.php and add the following code:

<?php defined('_JEXEC') or die('Restricted access'); ?>
<form action="index.php" method="post">
<table>
<tr><td>Name:</td> <td><input class="text_area"
 type="text" name="full_name" id="full_name" value="<?php echo
 $this->name; ?>" /></td></tr>
<tr><td>Comment:</td> <td><textarea
 class="text_area" cols="20" rows="4" name="comment_text"
 id="comment_text" style="width:500px"></textarea></td></tr>
</table>
<input type="hidden" name="review_id" value="<?php
 echo $this->review->id; ?>" />
<input type="hidden" name="task" value="comment" />
<input type="hidden" name="option" value="<?php echo $option; ?>" />
<input type="submit" class="button" id="button" value="Submit" />
</form>

Switching Through Controllers
Our development style up to this point roughly involves testing a variable through a
switch, and then calling an appropriate function. After adding a few more functions,
the code will start becoming unwieldy and difficult to navigate. To head this off
before it becomes a problem, we will create a controller to handle the logic flow of
the component.

Expanding the Project

[86]

Create the controller.php file in /components/com_reviews and enter the
following code:

<?php
defined('_JEXEC') or die('Restricted access');
jimport('joomla.application.component.controller');
class ReviewController extends JController
{
 function display()
 {
 $document =& JFactory::getDocument();
 $viewName = JRequest::getVar('view', 'all');
 $viewType = $document->getType();
 $view = &$this->getView($viewName, $viewType);
 $model =& $this->getModel($viewName, 'ModelReviews');
 if (!JError::isError($model)) {
 $view->setModel($model, true);
 }
 $view->setLayout('default');
 $view->display();
 }
 function comment()
 {
 global $option;
 $row =& JTable::getInstance('comment', 'Table');
 if (!$row->bind(JRequest::get('post'))) {
 echo "<script> alert('".$row->getError()."');
 window.history.go(-1); </script>\n";
 exit();
 }
 $row->comment_date = date('Y-m-d H:i:s');
 $user =& JFactory::getUser();
 if($user->_table->id)
 {
 $row->user_id = $user->_table->id;
 }
 if (!$row->store()) {
 echo "<script> alert('".$row->getError()."');
 window.history.go(-1); </script>\n";
 exit();
 }
 $this->setRedirect('index.php?option=' . $option .

Chapter 6

[87]

 '&id=' . $row->review_id . '&view=review',
 'Comment Added.');
 }
}
?>

The display() function is called by default when the controller is executed. In here,
we get the name of the requested view (defaulting to all). We also get the current
document object by using JFactory::getDocument(). From this, we get the current
document type with the getType() member function. Joomla! supports the definition
of multiple document types, allowing us to create a completely different version
of the output. For instance, you can have one document type for an RSS feed and
another for viewing a normal HTML page. By default, getType() will return HTML.

Next, we get a view object by passing the view name and type into the controller's
getView() member function. We also select a model for our view, make sure it
exists, and then assign it to the view. Finally, we assign the desired layout using the
view's setLayout() function, then tell the view to display.

The comment() function is essentially the same as the original saveComment()
function from reviews.php, only we've used the member function setRedirect()
to set a URL to ultimately return to after all of the processing is finished.

We finally have all the data models, views, and the controller necessary to run
the component as a model-view-controller style application. All that's left is the
code to execute the controller. Since Joomla! first executes reviews.php when the
component is run, we will have to modify the code in it to use the controller instead
of using the old switching system. Open /components/com_reviews/reviews.php
and replace the existing code with the following:

<?php
defined('_JEXEC') or die('Restricted access');
require_once(JPATH_COMPONENT.DS.'controller.php');
JTable::addIncludePath(JPATH_ADMINISTRATOR.DS.'components'.DS.
 'com_reviews'.DS.'tables');
echo '<div class="componentheading">Restaurant Reviews</div>';
$controller = new ReviewController();
$controller->execute(JRequest::getVar('task'));
$controller->redirect();
?>

Since we're now using the controller to organize our logic flow, we use
require_once(JPATH_COMPONENT.DS.'controller.php') to pull in the file
where we placed it. The constant JPATH_ COMPONENT is automatically set to the
absolute path of our component's front-end directory. In addition to the controller,

Expanding the Project

[88]

we want to pull in the database table classes as we did in the back end. Passing
JPATH_ADMINISTRATOR.DS.'components'.DS.'com_reviews'.DS.'tables' into
JTable:: addIncludePath() accomplishes this. Note that although we're building
the front-end portion of the component, we're getting the table classes from the back-
end directory.

After creating a new object of the ReviewController class, we call the execute()
member function, passing in the task requested by the user. If no task is defined, the
display() member function will be called. Otherwise, the name of the task will be
matched to a member function of the component. This way, you can add tasks to the
controller without also adding them to a lengthy switch() statement.

What If I Don't Want to Match 'task' to a Member Function with the
Same Name?
If you ever need to override this behavior, you can call the
registerTask() member function before calling execute() to add
specific tasks to specific functions. The function registerTask()
takes two parameters: the first is the value of task while the second is
the name of the member function you wish to call. This is particularly
useful when you want to have several tasks call the same function.

Updating Links and Routes
With the changes to our component's architecture, we need to make some changes
to code we wrote earlier in our module. The view review must be specified in the
generated links. In /modules/mod_reviews/helper.php, replace the line where
$link is set with this code:

$link = JRoute::_("index.php?option=com_reviews&view=review&id=" .
 $review->id);

Next, we need to update the router to use the view variable when building and
parsing links. Open /components/com_reviews/router.php and change the
highlighted code in ReviewsBuildRoute(), replacing the code that previously
processed task:

function ReviewsBuildRoute(&$query)
{
 $segments = array();
 if (isset($query['view'])) {
 $segments[] = $query['view'];
 unset($query['view']);
 }
 if(isset($query['id']))

Chapter 6

[89]

 {
 $segments[] = $query['id'];
 unset($query['id']);
 }
 return $segments;
}

Since we are no longer using task in our navigational links, we no longer need to
include it when building or parsing a SEF link. For updating ReviewsBuildRoute(),
this was a simple change from task to view. However, ReviewsParseRoute() will
need a bit of rewriting because we now have a situation where we might have 0, 1,
or 2 extra segments instead of just 0 or 2. The all view is not accompanied by an id,
so we need to adjust the parser to count the segments before attempting to set both
view and id. Replace ReviewsParseRoute() with the code below:

function ReviewsParseRoute($segments)
{
 $vars = array();
 $vars['view'] = $segments[0];
 if (count($segments) > 1)
{
 $vars['id'] = $segments[1];
 }
 return $vars;
}

In this version of the function, we set initialize the $vars array and then set
$vars['view'] to the first element of $segments. If there's more than one element in
$segments, we assume the second is an id and we set $vars['id'] with it. Finally,
we return $vars. Our links to the review listing will look like http://www.oursite.
com/reviews/all, while links to individual reviews will look like http://www.
oursite.com/reviews/review/2.

Reorganizing the Back-End Code
Using a controller will also benefit the back-end code that we created in Chapter 3.
We can reuse most of the existing code, while gaining the benefit of not maintaining
a switch() statement. In /administrator/components/com_reviews create the
controller.php file and add the following code:

defined('_JEXEC') or die('Restricted access');
jimport('joomla.application.component.controller');
class ReviewController extends JController
{
 function __construct($default = array())
 {

Expanding the Project

[90]

 parent::__construct($default);
 $this->registerTask('add' , 'edit');
 $this->registerTask('apply', 'save');
 }
 function edit()
 {
 global $option;
 $row =& JTable::getInstance('review', 'Table');
 $cid = JRequest::getVar('cid', array(0), '', 'array');
 $id = $cid[0];
 $row->load($id);
 $lists = array();
 $reservations = array(
 '0' => array('value' => 'None Taken',
 'text' => 'None Taken'),
 '1' => array('value' => 'Accepted',
 'text' => 'Accepted'),
 '2' => array('value' => 'Suggested',
 'text' => 'Suggested'),
 '3' => array('value' => 'Required',
 'text' => 'Required'),
);
 $lists['reservations'] = JHTML::_('select.genericlist',
 $reservations, 'reservations', 'class="inputbox" '. '',
 'value', 'text', $row->reservations);
 $lists['smoking'] = JHTML::_('select.booleanlist', 'smoking',
 'class="inputbox"', $row->smoking);
 $lists['published'] = JHTML::_('select.booleanlist', 'published',
 'class="inputbox"', $row->published);
 HTML_reviews::editReview($row, $lists, $option);
 }
 function save()
 {
 global $option;
 $row =& JTable::getInstance('review', 'Table');
 if (!$row->bind(JRequest::get('post')))
 {
 echo "<script> alert('".$row->getError()."');
 window.history.go(-1); </script>\n";
 exit();
 }
 $row->quicktake = JRequest::getVar('quicktake', '', 'post',
 'string', JREQUEST_ALLOWRAW);
 $row->review = JRequest::getVar('review', '', 'post',
 'string', JREQUEST_ALLOWRAW);
 if(!$row->review_date)
 $row->review_date = date('Y-m-d H:i:s');

Chapter 6

[91]

 if (!$row->store()) {
 echo "<script> alert('".$row->getError()."'); window.history.
go(-1); </script>\n";
 exit();
 }
 switch ($this->_task)
 {
 case 'apply':
 $msg = 'Changes to Review saved';
 $link = 'index.php?option=' . $option .
 '&task=edit&cid[]='. $row->id;
 break;
 case 'save':
 default:
 $msg = 'Review Saved';
 $link = 'index.php?option=' . $option;
 break;
 }
 $this->setRedirect($link, $msg);
 }
 function showReviews()
 {
 global $option;
 $db =& JFactory::getDBO();
 $query = "SELECT * FROM #__reviews";
 $db->setQuery($query);
 $rows = $db->loadObjectList();
 if ($db->getErrorNum()) {
 echo $db->stderr();
 return false;
 }
 HTML_reviews::showReviews($option, $rows);
 }
 function remove()
 {
 global $option;
 $cid = JRequest::getVar('cid', array(), '', 'array');
 $db =& JFactory::getDBO();	
 if(count($cid))
 {
 $cids = implode(',', $cid);
 $query = "DELETE FROM #__reviews WHERE id IN ($cids)";
 $db->setQuery($query);

Expanding the Project

[92]

 if (!$db->query()) {
 echo "<script> alert('".$db->getErrorMsg()."'); window.
history.go(-1); </script>\n";
 }
 }
 $this->setRedirect('index.php?option=' . $option);
 }
}

This controller overrides the constructor, registers the add task with edit(), and
applies the changes with save(). When save() is called, it can check $this->_task
to find which task triggered the function call and also use the information to redirect
the user appropriately.

At this point, we've elected to leave the current admin.reviews.html.php file in
place without migrating to views. The back-end views benefit less from the new
view architecture than the front-end code does; the back end does not need extensive
control over the output format.

We now need to change admin.reviews.php to use the controller. Open this file and
replace the code with the following:

<?php
defined('_JEXEC') or die('Restricted access');
require_once(JApplicationHelper::getPath('admin_html'));
require_once(JPATH_COMPONENT.DS.'controller.php');
JTable::addIncludePath(JPATH_COMPONENT.DS.'tables');
$controller = new ReviewController(
 array('default_task' => 'showReviews'));
$controller->execute(JRequest::getVar('task'));
$controller->redirect();
?>

Notice that we've passed an array into the controller constructor. This array has a
value for default_task, which allows us to tell the controller to call showReviews()
instead of looking for display(). Unlike the old switch, we are not able to pass
variables directly into controller member functions. If necessary, you can mimic this
by adding member variables to the controller. However, most of the variables you
would pass in are available through JFactory member functions, global objects, or
from the HTTP request variables.

Once all our files are in place and a default task is assigned, call the execute()
member function of the controller to have it perform the appropriate actions. We're
passing in the task request variable here to tell the controller which member
function to call. If no member function or registered task is found in the controller,

Chapter 6

[93]

the default task is executed. After the call to $controller->execute() is complete,
we use the redirect() member function to forward the user to any URL set by
setRedirect(). This design allows our functions to specify an ultimate destination
URL without going there right away. If we need to, we can perform a "clean up"
action after the controller is done executing the chosen task, and then perform
the redirection.

Publishing Controls for Reviews
When we built the back-end controls for the review component, we built a list screen
where the admins would be able to select an existing review for editing. At the far
right‑hand side of this screen, there is a column titled Published, which shows the
current publishing status of each review.

The 'check' icons in this column are actually buttons that are designed to toggle
between publishing and unpublishing the reviews. If you click on one of these
buttons now, the 'check' icon still remains as we have not yet added the code to make
this functional. The Publish and Unpublish buttons on the toolbar are also currently
non-functional. To fix this, we will add the function publish() to the back-end
controller and register the unpublish task with it:

function __construct($default = array())
{
 parent::__construct($default);
 $this->registerTask('add' , 'edit');
 $this->registerTask('apply', 'save');
 $this->registerTask('unpublish', 'publish');
}
function publish()
{
 global $option;

Expanding the Project

[94]

 $cid = JRequest::getVar('cid', array(), '', 'array');
 if($this->_task == 'publish')
 {
 $publish = 1;
 }
 else
 {
 $publish = 0;
 }
 $reviewTable =& JTable::getInstance('review', 'Table');
 $reviewTable->publish($cid, $publish);
 $this->setRedirect('index.php?option=' . $option);
}

Like the edit() function, the publish() function pulls in the current database object
with JFactory::getDBO() and gets the cid array from our form submission. Since
the publish function can handle both the publish and unpublish tasks, we check the
controller's _task variable to discover which one is being called. Based on this, we
set $publish to 1 or 0. Next, $reviewTable is set with a reference to an instance of
the ReviewTable class. Using the publish() member function of $reviewTable,
we pass in the array of review IDs and the value we want to set for the Published
column in the database. Finally, the controller is set to take us back to the main
component screen.

After saving this code, you should be able to click on the check mark to toggle the
publishing of any reviews in the back-end list.

Chapter 6

[95]

Adding Pagination
Before our reviewers add too many restaurants' reviews and the list becomes rather
lengthy, it would be helpful if we break this up into several screens so that they're
easier to manage. Something like the search engines, which typically show ten or
twenty results at a time. The functionality and interface for this is built into Joomla!
and quick to add. To start, we'll add pagination to the review manager in the back
end. The listings of reviews will appear across multiple pages and links will be
generated to navigate between them. Open /administrator/components/com_
reviews/controller.php and make the highlighted additions and modifications to
the showReviews() member function:

function showReviews()
{
 global $option, $mainframe;
 $limit = JRequest::getVar('limit',
 $mainframe->getCfg('list_limit'));
 $limitstart = JRequest::getVar('limitstart', 0);
 $db =& JFactory::getDBO();
 $query = "SELECT count(*) FROM #__reviews";
 $db->setQuery($query);
 $total = $db->loadResult();
 $query = "SELECT * FROM #__reviews";
 $db->setQuery($query, $limitstart, $limit);
 $rows = $db->loadObjectList();
 if ($db->getErrorNum()) {
 echo $db->stderr();
 return false;
 }
 jimport('joomla.html.pagination');
 $pageNav = new JPagination($total, $limitstart, $limit);
 HTML_reviews::showReviews($option, $rows, $pageNav);
}

The variables $limit and $limitstart represent the maximum number of records
to show and the record to start with respectively. If no limit is defined in the request,
we pull it from the Joomla! configuration. To correctly calculate the number of pages
to be generated, we need the total number of rows in the set; and then the $total
variable is set to this value. When we set the query to get the reviews we wish to
list, we only want to retrieve the rows we will display, so the second and third
parameters of setQuery() are used to define this. (The database-appropriate SQL is
automatically generated.)

Expanding the Project

[96]

Finally, we import the library that generates pagination HTML and get a
JPagination class instance set with our range and total. This object is passed along
to HTML_reviews::showReviews(), which needs to be modified to make use of the
object. Open admin.reviews.html.php and pull up the showReviews() member
function. Only the two small modifications highlighted below are necessary to
display the pagination:

function showReviews($option, &$rows, &$pageNav)
{
?>
<form action="index.php" method="post" name="adminForm">
<table class="adminlist">
 <thead>
 <tr>
 <th width="20">
 <input type="checkbox" name="toggle" value=""
 onclick="checkAll(<?php echo count($rows); ?>);" />
 </th>
 <th class="title">Name</th>
 <th width="15%">Address</th>
 <th width="10%">Reservations</th>
 <th width="10%">Cuisine</th>
 <th width="10%">Credit Cards</th>
 <th width="5%" nowrap="nowrap">Published</th>
 </tr>
 </thead>
 <?php
 jimport('joomla.filter.output');
 $k = 0;
 for ($i=0, $n=count($rows); $i < $n; $i++) {
 $row = &$rows[$i];
 $checked = JHTML::_('grid.id', $i, $row->id);
 $published = JCommonHTML::PublishedProcessing($row, $i);
 $link = JOutputFilter::ampReplace('index.php?option=' .
 $option . '&task=edit&cid[]='. $row->id);
 ?>
 <tr class="<?php echo "row$k"; ?>">
 <td><?php echo $checked; ?></td>
 <td><a href="<?php echo $link; ?>"><?php echo $row->name; ?></
a></td>
 <td><?php echo $row->address; ?></td>
 <td><?php echo $row->reservations; ?></td>
 <td><?php echo $row->cuisine; ?></td>
 <td><?php echo $row->credit_cards; ?></td>

Chapter 6

[97]

 <td align="center"><?php echo $published;?></td>
 </tr>
 <?php
 $k = 1 - $k;
 }
 ?>
<tfoot>
 <td colspan="7"><?php echo $pageNav->getListFooter(); ?></td>
</tfoot>
</table>
<input type="hidden" name="option" value="<?php echo $option;?>" />
<input type="hidden" name="task" value="" />
<input type="hidden" name="boxchecked" value="0" />
</form>
<?php
}

The call to the getListFooter() member function of $pageNav returns HTML for
links to each of the pages of review listings. The current page is highlighted, but not
linked. A dropdown controlling the number of reviews to display per page is also
returned. When you pull up the list in the back end, your screen should look similar
to the following. You may wish to add some reviews so that you have at least six.

Expanding the Project

[98]

By default, your pagination is probably set at 20 or a higher number. Select 5 from
the dropdown and you should be taken to a screen similar to the following:

Clicking on either the Next or End button should yield a screen with the remaining
records:

Management for Comments
We've added comments as a feature to the back end for the reviews component.
Unfortunately, websites offering comments are frequently abused. We need to
build a back-end manager where comments can be removed or edited. Before we
actually start writing code, we need to go back to the database to add a menu item
underneath the Restaurant Reviews link in the Components menu.

To create this insert query, we need to get the id for the current back-end component
link. If you're using a command-line SQL client and your database table prefix is
jos_, enter the following query:

SELECT id FROM jos_components WHERE link = 'option=com_reviews';

Chapter 6

[99]

If you are using phpMyAdmin, browse the jos_components table until you find the
row for Restaurant Reviews and note the value in the id column.

Once you have a value for id, enter the following query in your SQL client,
substituting 34 with the id in your system if necessary:

INSERT INTO jos_components (name, parent, admin_menu_link,
 admin_menu_alt, ordering)
 VALUES ('Manage Comments', 34,
 'option=com_reviews&task=comments', 'Manage Comments', 1);

If you're using phpMyAdmin, an insert screen for jos_components should look like
the following:

Expanding the Project

[100]

When you refresh the back end and move the cursor over the menu options, you
should notice a new submenu link along with a link above the component display:

Now that the link is in place, let's add a screen for the link to point to. In
/administrator/components/com_reviews/controller.php, add the
following function:

function comments()
{
 global $option, $mainframe;
 $limit = JRequest::getVar('limit',
 $mainframe->getCfg('list_limit'));
 $limitstart = JRequest::getVar('limitstart', 0);
 $db =& JFactory::getDBO();
 $query = "SELECT count(*) FROM #__reviews_comments";
 $db->setQuery($query);
 $total = $db->loadResult();
 $query = "SELECT c.*, r.name FROM #__reviews_comments

Chapter 6

[101]

 AS c LEFT JOIN #__reviews AS r ON r.id = c.review_id ";
 $db->setQuery($query, $limitstart, $limit);
 $rows = $db->loadObjectList();
 if ($db->getErrorNum())
 {
 echo $db->stderr();
 return false;
 }
 jimport('joomla.html.pagination');
 $pageNav = new JPagination($total, $limitstart, $limit);
 HTML_reviews::showComments($option, $rows, $pageNav);
}

This function is similar to the showReviews() function, except that we're combining
the reviews table into the comments table. We end it by calling HTML_reviews::
showComments(); we will need to code this as well. Open admin.reviews.html.
php and add the following code to the class:

function showComments($option, &$rows, &$pageNav)
{
 ?>
 <form action="index.php" method="post" name="adminForm">
 <table class="adminlist">
 <thead>
 <tr>
 <th width="20">
 <input type="checkbox" name="toggle"
 value="" onclick="checkAll(<?php echo
 count($rows); ?>);" />
 </th>
 <th class="title">Review Name</th>
 <th width="15%">Commenter</th>
 <th width="20%">Comment Date</th>
 <th width="30%">Comment</th>
 </tr>
 </thead>
 <?php
 jimport('joomla.filter.output');
 $k = 0;
 for ($i=0, $n=count($rows); $i < $n; $i++) {
 $row = &$rows[$i];
 $checked = JHTML::_('grid.id', $i, $row->id);
 $link = JOutputFilter::ampReplace('index.php?option=' .
 $option . '&task=editComment&cid[]='. $row->id);
 ?>

Expanding the Project

[102]

 <tr class="<?php echo "row$k"; ?>">
 <td><?php echo $checked; ?></td>
 <td><a href="<?php echo $link; ?>"><?php echo $row->name;
 ?></td>
 <td><?php echo $row->full_name; ?></td>
 <td><?php echo JHTML::Date($row->comment_date); ?></td>
 <td><?php echo substr($row->comment_text, 0, 149); ?></td>
 </tr>
 <?php
 $k = 1 - $k;
 }
 ?>
 <tfoot>
 <td colspan="5"><?php echo $pageNav->getListFooter();
 ?></td>
 </tfoot>
 </table>
 <input type="hidden" name="option"
 value="<?php echo $option;?>" />
 <input type="hidden" name="task" value="comments" />
 <input type="hidden" name="boxchecked" value="0" />
 </form>
 <?php
}

For the most part, this function is similar to the showReviews() counterpart. We
create a form named adminForm so that the built-in JavaScript can interact with it.
Our table header row includes a checkbox that toggles all the checkboxes on screen
at once. After we output the header, we load in the output filtering classes using
jimport('joomla.filter.output') so that we can use them to format the links
to comments. Next, we set $k to 0 so we can alternate the table row CSS classes.
This is followed by a loop through all of the comment rows. We get a checkbox and
create a link for each comment. Then we output a table row with the checkbox, the
link, the name of the commenter, the comment date and the comment text. We're
limiting the comment text through PHP's substr() function so that the admins can
see a portion of each comment without having them completely take over the screen.
We then alternate the value of $k to achieve our visual effect of shading every other
row. After the loop, we use the getListFooter() member function of $pageNav
to provide navigation between pages of listings. Finally, we set the hidden task
variable to comments and option to the current component name so that we land
back at this screen instead of the main screen when using the pagination controls.
The boxchecked variable is used by JavaScript to determine when any of the
checkboxes are toggled on.

Chapter 6

[103]

Now that this code is in place, follow one of the Manage Comments links. Your list
should look similar to the following:

We still need to build functions for editing, saving, and deleting comments. Add the
following functions to the back-end controller:

function editComment()
{
 global $option;
 $row =& JTable::getInstance('comment', 'Table');
 $cid = JRequest::getVar('cid', array(0), '', 'array');
 $id = $cid[0];
 $row->load($id);
 HTML_reviews::editComment($row, $option);
}
function saveComment()
{
 global $option;
 $row =& JTable::getInstance('comment', 'Table');
 if (!$row->bind(JRequest::get('post')))
 {
 echo "<script> alert('".$row->getError()."');
 window.history.go(-1);
 </script>\n";
 exit();
 }
 if (!$row->store()) {
 echo "<script> alert('".$row->getError()."');
 window.history.go(-1);
 </script>\n";
 exit();
 }
 $this->setRedirect('index.php?option=' . $option . '&task=comments',
'Comment changes saved');
}

Expanding the Project

[104]

function removeComment()
{
 global $option;
 $cid = JRequest::getVar('cid', array(), '', 'array');
 $db =& JFactory::getDBO();	
 if(count($cid))
 {
 $cids = implode(',', $cid);
 $query = "DELETE FROM #__reviews_comments WHERE id IN ($cids)";
 $db->setQuery($query);
 if (!$db->query())
 {
 echo "<script> alert('".$db->getErrorMsg()."');
 window.history.go(-1);
 </script>\n";
 }
 }
 $this->setRedirect('index.php?option=' . $option . '&task=comments'
);
}

These functions are similar to the ones used for editing, saving, and removing
reviews. The main difference is that we do not need to modify any of the data
before storing our comments and also we need not build any HTML elements for
the output class to display. The editComment() function calls HTML_reviews::
editComment() which also needs to be built. Open admin.reviews.html.php and
add the following function:

function editComment ($row, $option)
{
 JHTML::_('behavior.calendar');
 ?>
 <form action="index.php" method="post" name="adminForm"
 id="adminForm">
 <fieldset class="adminform">
 <legend>Comment</legend>
 <table>
 <tr>
 <td width="100" align="right" class="key">
 Name:
 </td>
 <td>
 <input class="text_area" type="text" name="full_name"
 id="full_name" size="50" maxlength="250" value="<?php echo
 $row->full_name;?>" />
 </td>
 </tr>

Chapter 6

[105]

 <tr>
 <td width="100" align="right" class="key">
 Comment:
 </td>
 <td>
 <textarea class="text_area" cols="20" rows="4"
 name="comment_text" id="comment_text"
 style="width:500px"><?php echo $row->comment_text;
 ?></textarea>
 </td>
 </tr>
 <tr>
 <td width="100" align="right" class="key">
 Comment Date:
 </td>
 <td>
 <input class="inputbox" type="text" name="comment_date"
 id="comment_date" size="25" maxlength="19" value="<?php echo
 $row->comment_date; ?>" />
 <input type="reset" class="button" value="..."
 onclick="return showCalendar('comment_date', 'y-mm-dd');" />
 </td>
 </tr>
 </table>
 </fieldset>
 <input type="hidden" name="id" value="<?php echo $row->id; ?>" />	
 <input type="hidden" name="option" value="<?php echo $option; ?>"
/>
 <input type="hidden" name="task" value="" />
 </form>
 <?php
}

The function begins by telling Joomla! to add the JavaScript and CSS class necessary
for our pop-up date calendar. Next, we build a form named adminForm and create a
fieldset that the admin CSS will format. We use a simple input for the name field and
give it the text_area CSS class. The comment itself is displayed in a textarea field,
also with a class of text_area. Finally the comment date value is held in an input
field of class inputbox, while the button that toggles the pop-up calendar is given
the class button. This button is set to call a the JavaScript function showCalendar(),
which interacts with the comment_date field holding the date in y-mm-dd format.
After the table and fieldset are closed, we add hidden variables for the comment id,
the component name in option, and placeholder for task JavaScript can fill in later.

Expanding the Project

[106]

Once all of this code is in place, click on a link to one of the comments in the back
end and a screen similar to the following should appear:

Additional Toolbars
If you try to use any of the toolbars in place at the moment on any of the comment
administration screens, you won't get the results you are expecting. This is because
the buttons are still pointing to the tasks for reviews. To fix this, we will need to
create some new toolbars for the comments. Open /administrator/components/
com_reviews/toolbar.reviews.html.php and add the following class:

class TOOLBAR_reviews_comments
{
 function _EDIT()
 {
 JToolBarHelper::save('saveComment');
 JToolBarHelper::cancel('comments');
 }
 function _DEFAULT()
 {
 JToolBarHelper::title(JText::_('Comments'), 'generic.png');
 JToolBarHelper::editList('editComment');
 JToolBarHelper::deleteList('Are you sure you want to remove
 these comments?', 'removeComment');
 }
}

The first parameter in the calls to the save(), cancel(), and editList() member
functions of JToolBarHelper overrides the default task, allowing us to redefine
them with our own. The call to title() allows us to use the left-hand portion of
the menu bar for identifying the screen, as we did with the toolbar for managing
reviews. Finally, the call to deleteList() takes a confirmation message as the first
parameter and the desired task as the second. The confirmation message is displayed
when boxes are checked to ask the user to confirm before proceeding with the
deletion task.

Chapter 6

[107]

To display these toolbars, we need to modify the switch() in toolbars.reviews.
php that we created in Chapter 2. The additional code is highlighted below:

switch($task)
{
 case 'edit':
 case 'add':
 TOOLBAR_reviews::_NEW();
 break;
 case 'comments':
 case 'saveComment':
 case 'removeComment':
 TOOLBAR_reviews_comments::_DEFAULT();
 break;
 case 'editComment':
 TOOLBAR_reviews_comments::_EDIT();
 break;
 default:
 TOOLBAR_reviews::_DEFAULT();
 break;
}

You should now see the toolbars below for the list and edit screens, respectively.
These should work only on the comments and should not interfere with the
functionality of the reviews management.

Summary
The simple component we first constructed has developed into software that can be
easily expanded and updated in the future. We now have data models that represent
all the information we display. Additional views allow our administrators to link
to their reviews in different ways. We also have more control over publishing and
comments, which will be essential as our site grows in popularity.

Behind the Scenes: Plug-Ins
So far, our restaurant reviews have been relatively easy to navigate and the site too
is user friendly. However, our restaurant critics want us to make things simpler
for them. We may periodically want to create feature articles for collections, such
as Late Night Dining Highlights or An All Asian Appetite. We want to make it easier
for the critics to link to the reviews within these articles and also make the reviews
searchable along with the articles.

These new features can be handled through plug-ins. Joomla! provides plug-ins as a
way of running pieces of code when certain events occur. Among other tasks, plug-
ins can be used to start HTML editors, perform searches, format content, and log
users into multiple systems at once. Plug-ins are able to interact with components
and modules without modifying their source code. The plug-ins we will write will
take us through the following topics:

Database Queries

A simple link plug-in

An information box plug-in

Searching reviews

•

•

•

•

Behind the Scenes: Plug-Ins

[110]

Database Queries
Before writing our code, there are some queries to be run that will register the plug-
ins in the database. We will be creating three plug-ins: two plug-ins will format
content and one will interact with Joomla!'s core search component. The queries will
add records pointing to the folders where each can be found along with their names.

In your SQL console, enter these three queries:

INSERT INTO jos_plugins (name, element, folder, published) VALUES
('Content - Reviews', 'reviews', 'content', 1);

INSERT INTO jos_plugins (name, element, folder, published) VALUES
('Content - Review Information', 'reviewinfo', 'content', 0);

INSERT INTO jos_plugins (name, element, folder, published)

 VALUES ('Search - Reviews', 'reviews', 'search', 1);

If you're using phpMyAdmin, pull up a screen to enter rows into jos_plugins
and enter the information as in the following screenshot to register the Content
– Reviews plug-in in the database:

Using phpMyAdmin, pull up a screen to enter rows into jos_plugins and enter
the information as in the following screenshot to register the Content – Review
Information plug-in in the database:

Chapter 7

[111]

Using phpMyAdmin, pull up a screen to enter rows into jos_plugins and enter the
information as in the following screenshot to register the Search – Reviews plug-in
in the database:

Behind the Scenes: Plug-Ins

[112]

A Simple Link Plug-In
One of our critics suggested that we should code something that would allow them
to link to a review by simply typing in the restaurant name. For instance, while
writing an article about lunch spots, the critic doesn't want to hunt down a link to the
Crosstown Deli review. Instead, by just typing Crosstown Deli, he wants it to turn into
a link when the article is published. We could modify the code in com_content to do
this, but the other critics don't know if they want to commit to this system yet. Also,
if com_content is ever patched, we'll have to modify the code again. Instead, we will
create a plug-in to search the output for review titles and automatically turn them
into links. To do this, create the reviews.php file in the /plugins/content in your
Joomla! installation and add the following code:

<?php
defined('_JEXEC') or die('Restricted access');
$mainframe->registerEvent('onPrepareContent',
 'pluginReviews');

We use the registerEvent() function of the $mainframe object to assign
pluginReviews() to the onPrepareContent event. When Joomla! loads a
content item from the database, it will trigger all the functions assigned to the
onPrepareContent event.

The pluginReviews() function is passed the row for the article being loaded, along
with an object of parameters for the article. We use contentReviews_getlist() to
get an array of restaurant names keyed by review id. Next, we build two arrays: one
with patterns to search for and another with replacement strings. In the $pattern
array, we're using preg_quote() on all the restaurant names to escape any
characters that would normally be a part of a regular expression. For $replace, we
call contentReviews_makeLink() and pass in the review name as well as the array
of names. This will allow contentReviews_makeLink() to extract the id and format
the link. Once our patterns and replacements are set, we use preg_replace() to
substitute the links. We set $row->text to the result of preg_replace() as the object
is passed by reference.

function contentReviews_makeLink ($title, &$reviews)
{
 $id = array_search($title, $reviews);
 $link = JRoute::_('index.php?option=com_reviews&view=review&id=' .
$id);
 $link = '' . $title . '';
 return $link;
}

Chapter 7

[113]

Given the review title and an array of titles keyed by review id, contentReviews_
makeLink() uses PHP's array_search() function to get the id that goes with the
title. The variable $link is then set with a relative URL to the article passed through
JRoute::_(). The $link variable is then set again with HTML for an anchor tag,
using the article title as the link text. We then return $link.

function contentReviews_getlist()

{

 $reviews = array();

 $db =& JFactory::getDBO();

 $query = "SELECT id, name FROM #__reviews";

 $db->setQuery($query);

 $rows = $db->loadObjectList('id');

 foreach($rows as $id => $row)

 {

 $reviews[$id] = $row->name;

 }

 return $reviews;

}

?>

In contentReviews_getlist(), we pass the column id into loadObjectList() so
that the results come back automatically keyed; we only need to reference the name
from each row.

Notice that the main function is in the format of 'plug-in' followed by the name of
the file. Similarly, the other two functions begin with the type of plug-in (content),
followed by the filename, an underscore and a name. While this convention is not
required, it will help us avoid name conflicts with other plug-ins.

Behind the Scenes: Plug-Ins

[114]

What Events Can be Registered?
Plug-ins in Joomla! can respond to any number of events during a request.
Multiple plug-ins can respond to any one event in their group. The
ordering of the plug-ins in Joomla!'s back end determines the order which
registered functions are called. For instance, if both plug-in A and plug-in
B respond to onBeforeDisplayContent, A's function registered with
onBeforeDisplayContent will be called first. A listing of when these
events occur, grouped by plug-in type is as follows:
System:
onAfterInitialise – after the framework loads, but before routing and
output
onAfterRoute – after routing, but before output
onAfterDispatch – after the Joomla! application is started
onAfterRender – after all output is processed
onGetWebServices – when the XML-RPC function requests a list of valid
function calls
onLoginFailure – when a login attempt fails
Search:
onSearch – when a search is performed
onSearchAreas – when the search component requests a list of valid
search areas
Authentication:
onAuthenticate – when a user initially attempts to authenticate,
provides a method for authentication
User:
onLoginUser – after a user initally authenticates, but before fully logged
in: all functions must return true finish to authenticate
onLogoutUser – when a user attempts to logout: all functions must return
true to logout
onBeforeStoreUser – just before a user is stored in the database
onAfterStoreUser – after a user is stored in the database
onBeforeDeleteUser – just before a user is deleted from the system
onAfterDeleteUser – just after a user is deleted from the system
Editor-xtd:
onCustomEditorButton – when custom editor buttons are loaded,
allows the additon of buttons
Editor:
onInit – when the editor is initialized
onDisplay – when the editor is ready to be displayed
onGetContent – when the contents of the editor are requested
onSetContent – when the contents of the editor are populated
onSave – when the contents of the editor are saved
onGetInsertMethod – just before the editor is output

Chapter 7

[115]

Content:
onPrepareContent – before any output occurs
onAfterDisplayTitle – just after article title is displayed
onBeforeDisplayContent – just before content is output, returns output
to be displayed
onAfterDisplayContent – just after content is output, returns output to
be displayed

function pluginReviews(&$row, &$params)
{
 $reviews = contentReviews_getlist();
 $pattern = array();
 $replace = array();
 foreach($reviews as $review)
 {
 $pattern[] = '/' . preg_quote($review) . '/';
 $replace[] = contentReviews_makeLink($review,
$reviews);
 }
 $row->text = preg_replace($pattern, $replace, $row-
>text);
 return true;
}

Before adding the plug-in, one of our articles could have looked like the following:

Behind the Scenes: Plug-Ins

[116]

After applying the plug-in, our article will change the restaurant names into links
like in the following screenshot:

An Information Box Plug-In
Another critic was less interested in the links, but was interested in getting a box that
would display the "vital details" for the restaurant of her choice. To use this feature,
we will instruct the critic to enclose the name of the review in curly braces, preceded
by the word review and a space. For example, the details for "The Daily Dish" could
be added in by entering {review The Daily Dish}.

Why Curly Braces?
Many core plug-ins use curly braces as a way of creating "plug-in tags"
in content items so they aren't confused with HTML or XML. Frequently,
you will see them used alone (as in {runmyplugin}), with parameters
(as we're doing with the reviews), or enclosing text ({plugin} like
this {/plugin}). PHP's Perl-style regular expression functions are
very useful for detecting these patterns. More information about these
functions can be found on the PHP website: http://www.php.net/
manual/en/ref.pcre.php.

Before we write the code for this, go to the administrator back end, unpublish our
first plug-in, and then publish the new one. Go to Extensions | Plugin Manager,
page through the results, unpublish Content – Reviews, and publish Content
– Review Information.

Chapter 7

[117]

Then create the file reviewinfo.php in /plugins/content and add this code:

<?php
defined('_JEXEC') or die('Restricted access');
$mainframe->registerEvent('onPrepareContent',
 'pluginReviewInfo');

As we did for the first plug-in, we register the function pluginReviewInfo() to
trigger on the onPrepareContent event.

function pluginReviewInfo (&$row, &$params)
{
 preg_match_all('/\{reviewinfo (.*)\}/U',
 $row->text, $matches);
 foreach($matches[1] as $name)
 {
 $review = contentReviewInfo_getReviewByName($name);
 $html = contentReviewInfo_createHTML($review);
 $row->text = str_replace("{reviewinfo $name}",
 $html, $row->text);
 }
 return true;
}

The triggering event automatically passes the row of content and article parameters
into pluginReviewInfo(). We use PHP's preg_match_all() to get all the
{reviewinfo ...} tags in the article, collecting them in $matches. The array in
$matches[1] contains all the names that were captured between the space after
reviewinfo and the end of the tag. We cycle through this array and pass the names
into contentReviewInfo_getReviewByName() to get the information for each
review. Next, we get an HTML-formatted snippet of information in $html by passing
the $review object into contentReviewInfo_createHTML(). Finally, we use PHP's
str_replace() to replace all occurrences of the reviewinfo tag for that review with
the HTML snippet.

function contentReviewInfo_getReviewByName ($name)
{
 $db =& JFactory::getDBO();
 $name = addslashes($name);
 $query = "SELECT * FROM #__reviews WHERE name = '$name'";
 $db->setQuery($query);
 $review = $db->loadObject();
 return $review;
}

Behind the Scenes: Plug-Ins

[118]

Without a review id, we use contentReviewInfo_getReviewByName() to fetch
the information for the review given only the name. First, we get a reference
to the current database object. Next, we take the $name variable pass it into the
function and run it through PHP's addslashes() so that reviews with apostrophes
do not cause the query to fail. We run the query and use the member function
loadObject() to load only the first row in the results. We've warned our critic that
this may not work as expected if two people write separate reviews for the same
restaurant, but she's guaranteed us that the other critics are too narcissistic to write
about a place someone else already reviewed.

function contentReviewInfo_createHTML (&$review)
{
 $html = '<table class="moduletable">';
 $html .= '<tr><th colspan="2">Info</th></tr>';
 $html .= '<tr><td>Address:</td><td>' .
 $review->address . '</td></tr>';
 $html .= '<tr><td>Price Range:</td><td>$' .
 $review->avg_dinner_price . '</td></tr>';
 $html .= '<tr><td>Reservations:</td><td>' .
 $review->reservations . '</td></tr>';
 if ($review->smoking == 0)
 {
 $smoking = 'No';
 }
 else
 {
 $smoking = 'Yes';
 }
 $html .= '<tr><td>Smoking:</td><td>' .
 $smoking . '</td></tr>';
 $html .= '</table>';
 return $html;
}
?>

Chapter 7

[119]

Finally, our contentReviewInfo_createHTML() function takes a review object row
as a parameter and formats it into an HTML table. This HTML table is given the
moduletable class, which is standard in Joomla! templates. The address, price
range, and reservations policy are all included in the HTML as-is. The smoking
column is tested, with $smoking set to Yes or No depending on the column value. We
then use $smoking to finish the last row in the table.

Before applying this plug-in, our critic's article would probably look something like
the following screenshot:

Behind the Scenes: Plug-Ins

[120]

After publishing the plug-in, the article will transform into something like
the following:

Chapter 7

[121]

Searching the Reviews
Some of our visitors have complained that they cannot find restaurant reviews
through the search box at the top of the screen. We can fix this by writing a search
plug-in to scan the reviews along with the results for content. Create the file
/plugins/search/reviews.php and add the following code:

<?php
defined('_JEXEC') or die('Restricted access');
$mainframe->registerEvent('onSearch', 'botSearchReviews');
$mainframe->registerEvent('onSearchAreas', 'botSearchReviewAreas');

For the search plug-in, we've registered functions for two events: onSearch and
onSearchAreas. The onSearch event is triggered when the search component looks
for results for a given phrase. Triggers to the onSearchAreas event are made when
the search form is being built so that a visitor can have a choice over which records
are returned.

function &botSearchReviewAreas() {
 static $areas = array(
 'reviews' => 'Restaurant Reviews'
);
 return $areas;
}

The botSearchReviewAreas() function is used to return an array of valid search
areas. While it is possible to have more than one search area (say, search the review
text or search the review notes), we are going to keep it simple for visitors and just
search reviews as a whole. By default, the search component will return results from
all published search plug-ins. When the visitor checks off one or more search areas,
they are limiting their search to only find records from those areas. An ampersand
precedes the function name botSearchReviewAreas() so that a reference to the
$areas array is returned; we don't want to create a redundant copy of the static
array in memory.

function botSearchReviews ($text, $phrase='',
 $ordering='', $areas=null)
{

When a search takes place, botSearchReviews() is called with up to four
parameters. The search keywords are passed into $text. We can impose special
conditions using $phrase, which can be set to any (any of these words), all (all
of these words), or exact (exactly this phrase). Record sorting is determined by
$ordering, which can be set to newest, oldest, popular, alpha, or category.
Finally, $areas is an array of the search areas currently selected by the visitor.

Behind the Scenes: Plug-Ins

[122]

 if (!$text) {
 return array();
 }
 if (is_array($areas)) {
 if (!array_intersect($areas,
 array_keys(botSearchReviewAreas()))) {
 return array();
 }
 }

There are a couple of situations where we may want to quit the processing at that
instant. First, if there are no search keywords in $text, we know there won't be any
results, so we return an empty array. Next, we test to see if $areas is set as an array.
If so, we match this array against the valid search areas for our plug-in. If none of
the items in $areas are intended for our plug-in, we return an empty array. When
$areas is set to null, all search areas are assumed to be on.

 $db =& JFactory::getDBO();
 if ($phrase == 'exact')
 {
 $where = "(LOWER(name) LIKE '%$text%')
 OR (LOWER(quicktake) LIKE '%$text%')" .
 " OR (LOWER(review) LIKE '%$text%')
 OR (LOWER(notes) LIKE '%$text%')";
 }
 else
 {
 $words = explode(' ', $text);
 $wheres = array();
 foreach ($words as $word) {
 $wheres[] = "(LOWER(name) LIKE '%$word%')
 OR (LOWER(quicktake) LIKE '%$word%')" .
 " OR (LOWER(review) LIKE '%$word%')
 OR (LOWER(notes) LIKE '%$word%')";
 }
 if($phrase == 'all')
 {
 $separator = "AND";
 }
 else
 {
 $separator = "OR";
 }
 $where = '(' . implode(") $separator (" , $wheres) . ')';
 }
 $where .= ' AND published = 1';

Chapter 7

[123]

After getting the current database object instance from JFactory::getDBO(), we
build the WHERE clause for a query to use for searching the reviews. We test the
variable $phrase to determine how the visitor wants to have the search terms
treated. If they were intending an exact phrase, we simply match the search term as
a whole against the name, quicktake, review, and notes fields in jos_reviews. For
'all' and 'any' searches, we separate out each word in the search term and build an
array of WHERE statements, which are joined according to the type of search. Finally,
we add a check to make sure we only include published reviews.

 switch ($ordering) {
 case 'oldest':
 $order = 'review_date ASC';
 break;
 case 'alpha':
 $order = 'title ASC';
 break;
 case 'newest':
 default:
 $order = 'review_date DESC';
 break;
 }

After dealing with the search terms, we need to order the reviews properly. Of
the five possible, only three really make sense for our plug-in: oldest, newest, and
alphabetical. Our default is to sort by the review date reverse chronologically.

 $query = "SELECT name AS title, quicktake AS text,
 review_date AS created, " .
 "\n 'Restaurant Reviews' AS section," .
 "\n CONCAT('index.php?option=com_reviews&view=review&id=', id) AS
href," .
 "\n '2' AS browsernav" .
 "\n FROM #__reviews" .
 "\n WHERE $where" .
 "\n ORDER BY $order";
 $db->setQuery($query);
 $rows = $db->loadObjectList();
 return $rows;
}
?>

Behind the Scenes: Plug-Ins

[124]

Finally, we finish assembling our query. Links to reviews are constructed directly
in the query using the CONCAT() function and are aliased to the href column. We
also alias the value 2 as browsernav. Also, name is aliased to title, quicktake to
text and review_date to created. All these column aliases are expected by the search
component so that it knows which links to output and how to format them. When
browsernav is set to 1, links are set to open in a new window; when it is set to 2, they
open in the current one.

The query is then set, we load the results as an array of objects into $rows, and we
return $rows so that they can be included alongside other search results. Before the
addition of this plug-in, a search on 'dish' might have returned a result set similar to
the following one:

Chapter 7

[125]

After adding the plug-in, "The Daily Dish" should appear in the results:

Limiting the search to only reviews should return just "The Daily Dish":

Behind the Scenes: Plug-Ins

[126]

Summary
With our plug-ins in place, the critics are now able to link to the original reviews
without even copying URLs. We've also given them the option of showing a details
box that matches whichever template we choose. Finally, the reviews can now be
found in search results along with our articles. Visitors can limit the keyword search
to just the reviews if they wish; if they remember the word 'croutons' being in a
certain review, they will have no problems finding it.

Configuration Settings
Our reviewers are satisfied with all the features we've provided, but there are
some concerns. They would like to have specific control over certain functions.
Fortunately, we don't have to add any mundane record management to do this;
instead we can concentrate on the logic. Our extensions will need a little rewriting,
but nothing too drastic.

Adding Parameters to Extensions
Parameters for Modules
Parameters for Plug-ins
Parameters for Components

Adding Parameters to Extensions
Throughout the book, we've run queries to register extensions in Joomla!. Within
the tables where we inserted this data, there is a column named params. This
column allows us to store configuration parameter values in the database. However,
the column itself does not enforce any kind of format for the parameter values.
To do this, we will enter the parameter values as a part of an XML document for
configuration. This file will sit alongside our main module file and contain basic
identification information, along with a list of all the possible settings.

Parameters for Modules
The module we wrote for Restaurant Reviews already has logic for different display
types and different data retrieval scenarios. This will make it simpler to pull in the
parameters and use them in a meaningful way.

•

•

•

•

Configuration Settings

[128]

In /modules/mod_reviews create an XML configuration file mod_reviews.xml and
enter the following code:

<?xml version="1.0" encoding="utf-8"?>
<install type="module" version="1.5">
 <name>Restaurant Reviews</name>
 <author>Sumptuous Software</author>
 <creationDate>January 2007</creationDate>
 <copyright>(C) 2007</copyright>
 <license>Commercial</license>
 <authorEmail>support@packtpub.com</authorEmail>
 <authorUrl>www.packtpub.com</authorUrl>
 <version>1.0</version>
 <description>A module for promoting restaurant
 reviews.</description>
 <params>
 <param name="random" type="radio" default="0" label="Randomize"
 description="Show random reviews">
 <option value="0">No</option>
 <option value="1">Yes</option>
 </param>
 <param name="@spacer" type="spacer"
 default="" label="" description="" />
 <param name="items" type="text" default="1" label="Display #"
 description="Number of reviews to display" />
 <param name="style" type="list" default="default" label="Display
style" description="The style to use for displaying the reviews.">
 <option value="default">Flat</option>
 <option value="bulleted">Bulleted</option>
 </param>
 </params>
</install>

The XML document begins with a standard XML definition, with all the remaining
elements wrapped by <install>. This first element defines that the extension we're
describing is a module and that it is intended for Joomla!. Within <install>, we
have several elements that are intended for identification: name, author, creation
date, copyright, license, author email, author URL, version, and description.
Except for description, these will appear in the back end in the modules section of
Extension Manager.

After the identification elements, we then add the <params> element, which encases
several <param> elements. For our module we would like to provide options for
controlling display of random restaurants, number of reviews displayed at a time,
and whether the review display is flat listed or bulleted.

Chapter 8

[129]

The XML document not only allows us to enforce the data rules for these options, but
also allows us to define how they would appear as back-end controls. The control
for randomizing the reviews makes sense as a yes/no decision, so a radio button is
appropriate. We give these parameters the name random (to match our earlier code),
the type radio, the default 0 (for no), the label Randomize, and the description Show
random reviews. Within this parameter element, we define two <option> elements,
one with 0 as a value and No as the text and another with 1 and Yes respectively,
similar to the way in which HTML select options are coded.

Since the other two options have less to do with data retrieval and more with
display, we will set these options off with a spacer. The spacer will not have a
description, label, or default value, but will be of type spacer and named @spacer.

For the number of items to be displayed, we want the administrator to simply enter
in a number. We use a parameter of type text and set the default to 1. For the choice
of style, there should only be a choice from the ones available. We use the list type of
parameter and define the flat and bulleted options similarly to the way we did for
the radio button.

What Parameters Are Available for Use?
Modules, plug-ins, and components all allow you to define configuration
parameters through XML files. Many common parameter types are
predefined and can be used in any extension. Every parameter you define
must have five basic attributes. First, you must give the parameter a name
so you can reference it later in your code. Next, you need a default value
to be displayed and used if no value is chosen. To identify the parameter,
you need to give it both a visible label and a description appearing when
the mouse cursor hovers over it. Finally, you must specify the type of
parameter; a categorized list is below:
Content:
section - All published sections in a list
category - All published categories in a list
Text Input:
text - A standard text input
textarea - A plain textarea field
password - A standard text input where the characters are masked as they
are entered
editors - Provides the admin's currently chosen WYSIWYG editor for input
Selections:
menu - All published menus in a list
menuitem - All published menu items in a list

Configuration Settings

[130]

filelist - A list of files to choose from, given a base folder path
folderlist - A list of folders to choose from, given a base folder path
imagelist - A list of images to choose from, given a base folder path
list - A list of items to choose from (hardcoded into parameter definition)
radio - A list of radio selection items to choose from (hardcoded into
parameter definition)
sql - Creates a dropdown list out of a provided SQL query
Predefined:
helpsites - A list of websites powering help file translations to choose
from
languages - A list of installed languages to choose from
spacer - Creates a visual separation between parameters; no input value
is required
timezones - A list of all world timezones
Other:
hidden - Creates a hidden form element with the value and name provided

After saving the XML document, go to the back end and navigate to Extensions |
Module Manager. From here, choose Restaurant Reviews from the list and you
should see a screen similar to the following:

You should be able to set these parameters, save the module, then reopen it and
see the changes. With the parameter definitions in place, we now need to make
some adjustments to the code so that the values are used in a meaningful way.
Open /modules/mod_reviews/mod_reviews.php and make the following
highlighted changes:

<?php
defined('_JEXEC') or die('Restricted access');
require(dirname(__FILE__).DS.'helper.php');
$random = $params->get('random', 0);
$style = $params->get('style', 'default');

Chapter 8

[131]

if($random)
{
 $list = modReviewsHelper::getRandomReview();
}
else
{
 $list = modReviewsHelper::getReviews($params);
}
require(JModuleHelper::getLayoutPath('mod_reviews', $style));
?>

For modules, $params is automatically available in global scope. This object has the
member function get(), which returns the parameter value given the name (and
optionally, a default value). Our previous code handles the random option, while we
make a small change in the call to getLayoutPath to allow for the different styles.

After saving the file, go back to the module configuration panel, Restaurant Reviews
in the back end, set Display # to a value of 2, then save the module. On the front end,
the module should appear similar to the following image:

Parameters for Plug-Ins
For our content review links plug-in, we would like to give the administrators some
control for formatting the link. They should be able to add text to the link to show
that it goes to a review or change the anchor tag to have more attributes. The process
for adding parameters to our plug-in is similar to what we do for modules. Open
/plugins/content/reviews.xml and add this code:

<?xml version="1.0" encoding="utf-8"?>
<install version="1.5" type="plugin" group="content">
 <name>Content - Restaurant Review Links</name>
 <author>Sumptuous Software</author>
 <creationDate>January 2007</creationDate>
 <copyright>(C) 2007</copyright>
 <license>Commercial</license>

Configuration Settings

[132]

 <authorEmail>support@packtpub.com</authorEmail>
 <authorUrl>www.packtpub.com</authorUrl>
 <version>1.0</version>
 <description>Searches for titles of restaurants in
 articles and turns them into review links.</description>
 <params>
 <param name="linkcode" type="textarea" default=""
 rows="5" cols="40" label="Custom Link Code"
 description="By using {link} and {title},
 you can generate custom HTML output that
 includes the URL and review title respectively." />
 </params>
</install>

Since our administrators will be adding a bit of code, it will be helpful to have more
room than a typical text input provides. To handle this, we create the linkcode
parameter as type textarea. Go to the back end and navigate to Extensions | Plugin
Manager, then select Content – Reviews from the list. There should be a box labeled
Custom Link Code, where you can enter the code for the links. Our reviewers have
decided that they want to reinforce the fact that the reviews are merely their opinions
of the restaurants. They want the text (our take) to follow the title of each review.
Since they're prone to change their minds, the parameter we're defining will give
them a way of changing the output without actually getting into the code. We will
define the tags {link} and {title} as the relative URL and review title respectively;
these tags will be dynamically replaced with the appropriate values when the content
is displayed. In the Custom Link Code box, enter
{title} (our take). It should look like the following figure:

Save the plug-in. Before our formatting can take effect, we need to change the plug-
in code to read the parameters and change the link accordingly. Open /plugins/
content/reviews.php and make the following highlighted changes and additions:

function pluginReviews(&$row, &$params)
{
 $plugin =& JPluginHelper::getPlugin('content', 'reviews');
 $pluginParams = new JParameter($plugin->params);
 $reviews = contentReviews_getlist();

Chapter 8

[133]

 $pattern = array();
 $replace = array();
 foreach($reviews as $review)
 {
 $pattern[] = '/' . preg_quote($review) . '/';
 $replace[] = contentReviews_makeLink(
 $review, $reviews, $pluginParams);
 }
 $row->text = preg_replace($pattern, $replace, $row->text);
 return true;
}
function contentReviews_makeLink ($title, &$reviews, &$pluginParams)
{
 $linkcode = $pluginParams->get('linkcode', '');
 $id = array_search($title, $reviews);
 $link = JRoute::_('index.php?option=com_reviews&view=review&id=' .
$id);
 if($linkcode == '')
 {
 $linkcode = '' . $title . '';
 }
 else
 {
 $linkcode = str_replace('{link}', $link, $linkcode);
 $linkcode = str_replace('{title}', $title, $linkcode);
 }
 return $linkcode;
}

In pluginReviews(), we start by using the getPlugin() member function of
JPluginHelper to get our plug-in object, passing in the plug-in folder content
and name reviews respectively. The params member variable is passed into a
constructor for JParameter to get the parameters back as an object. We pass this
object into contentReviews_makeLink(), where the value for the linkcode
parameter is extracted. If there is no value for linkcode, we return the link as usual.
Otherwise, we look for our {link} and {title} tags and replace them with the
appropriate elements.

Configuration Settings

[134]

After saving the plug-in code, links to reviews should look similar to the
following title:

Adding configuration for the Review Information plug-in is similar. This time, we
have four possible pieces of data that are displayed with every information box. This
might be too much, so we will allow the administrator to turn certain fields off. Open
/plugins/content/reviewinfo.xml and add the following code:

<?xml version="1.0" encoding="utf-8"?>
<install version="1.5" type="plugin" group="content">
 <name>Content - Review Information</name>
 <author>Sumptuous Software</author>
 <creationDate>January 2007</creationDate>
 <copyright>(C) 2007</copyright>
 <license>Commercial</license>
 <authorEmail>support@packtpub.com</authorEmail>
 <authorUrl>www.packtpub.com</authorUrl>
 <version>1.0</version>
 <description>Turns {reviewinfo Name of your restaurant}
 into a table with the review's essential
 details.</description>
 <params>
 <param name="address" type="radio" default="1"
 label="Display Address?" description="Toggles
 the display of the address in summaries.">
 <option value="1">Yes</option>
 <option value="0">No</option>
 </param>
 <param name="price_range" type="radio" default="1"
 label="Display Price Range?" description="Toggles
 the display of the price range in summaries.">
 <option value="1">Yes</option>
 <option value="0">No</option>
 </param>

Chapter 8

[135]

 <param name="reservations" type="radio" default="1"
 label="Display Reservations?" description="Toggles
 the display of reservation policy in summaries.">
 <option value="1">Yes</option>
 <option value="0">No</option>
 </param>
 <param name="smoking" type="radio" default="1"
 label="Display Smoking?" description="Toggles
 the display of smoking policy in summaries.">
 <option value="1">Yes</option>
 <option value="0">No</option>
 </param>
 </params>
</install>

The <params> section of this XML file defines four radio buttons, all set to Yes
by default. These will be used to turn the displays of the address, price range,
reservations, and smoking in the review summary on and off. After saving the
file, open the plug-in by navigating to Extensions | Plugin Management, then
select Content – Review Information. After Selecting No for Display Address, the
parameters box should look similar to the following:

As we did for the link plug-in, we will pull in the parameters once and then pass
them into another function. Make the following edits and additions to /plugins/
content/reviewinfo.php:

function pluginReviewInfo (&$row, &$params)
{
 $plugin =& JPluginHelper::getPlugin('content', 'reviewinfo');
 $pluginParams = new JParameter($plugin->params);
 preg_match_all('/\{reviewinfo (.*)\}/U', $row->text, $matches);
 foreach($matches[1] as $name)
 {
 $review = contentReviewInfo_getReviewByName($name);
 $html = contentReviewInfo_createHTML($review, $pluginParams);
 $row->text = str_replace("{reviewinfo $name}", $html,
 $row->text);

Configuration Settings

[136]

 }
 return true;
}
function contentReviewInfo_createHTML (&$review, &$pluginParams)
{
 $html = '<table class="moduletable">';
 $html .= '<tr><th colspan="2">Info</th></tr>';
 if($pluginParams->get('address', 1))
 {
 $html .= '<tr><td>Address:</td><td>' .
 $review->address . '</td></tr>';
 }
 if($pluginParams->get('price_range', 1))
 {
 $html .= '<tr><td>Price Range:</td><td>$' .
 $review->avg_dinner_price . '</td></tr>';
 }
 if($pluginParams->get('reservations', 1))
 {
 $html .= '<tr><td>Reservations:</td><td>' .
 $review->reservations . '</td></tr>';
 }
 if ($review->smoking == 0)
 {
 $smoking = 'No';
 }
 else
 {
 $smoking = 'Yes';
 }
 if($pluginParams->get('smoking', 1))
 {
 $html .= '<tr><td>Smoking:</td><td>' .
 $smoking . '</td></tr>';
 }
 $html .= '</table>';
 return $html;
}

What about the $params Passed into pluginReviewInfo()?
In the function definition of pluginReviewInfo(), a variable named
$params is passed in. These are not the plug-in's parameters; they are
the parameters for the content item. Likewise, the $row object is the row
in the database in #__content matching the current content item.

Chapter 8

[137]

After getting the parameters for the plug-in in pluginReviewInfo(), we pass
them into contentReviewInfo_createHTML() where we test each field for the
corresponding configuration value. If all the fields are set to Yes, the information box
in content should appear like the following image:

When we turn off Addresses, it should appear like the following image:

Finally, we have the search plug-in. Open /plugins/search/reviews.xml and add
the following XML:

<?xml version="1.0" encoding="utf-8"?>
<install version="1.5" type="plugin" group="search">
 <name>Search - Restaurant Reviews</name>
 <author>Sumptuous Software</author>
 <creationDate>January 2007</creationDate>
 <copyright>(C) 2007</copyright>
 <license>Commercial</license>
 <authorEmail>support@packtpub.com</authorEmail>
 <authorUrl>www.packtpub.com</authorUrl>

Configuration Settings

[138]

 <version>1.0</version>
 <description>Allows Searching of Restaurant Reviews</description>
 <params>
 <param name="search_limit" type="text" size="5" default="50"
 label="Search Limit" description="Number of Search items
 to return"/>
 </params>
</install>

By default, we set the number of items to return in the search to 50 (probably
more than the number of total items per screen in the search results). With this
configuration parameter, we can limit the number of reviews returned all the way
down to 1.

To make our configuration work, open /plugins/search/reviews.php and make
the following adjustments:

function botSearchReviews ($text, $phrase='',
 $ordering='', $areas=null)
{
 $db =& JFactory::getDBO();
 if (is_array($areas))
 {
 if (!array_intersect($areas,
 array_keys(botSearchReviewAreas())))
 {
 return array();
 }
 }
 $plugin =& JPluginHelper::getPlugin('search', 'reviews');
 $pluginParams = new JParameter($plugin->params);
 $limit = $pluginParams->get('search_limit', 50);
 $db->setQuery($query, 0, $limit);
 $rows = $db->loadObjectList();
 return $rows;
}

As with the other plug-ins, we first get the parameters for search reviews and then
use JParameter to create an object out of them. For the call to setQuery(), we're
passing in two additional values that will automatically build our limit clause: 0 to

Chapter 8

[139]

start with the first row and $limit to go to our configured limit. Before adding our
limit of only one restaurant review per search, a search for 'local' may have resulted
in the following screen:

After adding a limit, the results would look more like the following:

Configuration Settings

[140]

In the two results, the number of content items returned is unchanged; only the
number of reviews has changed.

Parameters for Components
In an effort to internationalize our component, we want to give the administrators
the ability to change the currency symbol displayed alongside the average dinner
price field. Our component is separated into multiple views and we can configure
each of them separately. Instead of writing an XML file in the back end, we will make
one for each view in the front end. To start, create the metadata.xml file in the folder
/components/com_reviews/views/all and add the following information:

<?xml version="1.0" encoding="utf8"?>
<metadata>
 <view title="All">
 <message>
 <![CDATA[Shows all reviews.]]>
 </message>
 </view>
 <params>
 <param name="currency_symbol" type="text" size="3"
 default="$" label="Currency Symbol"
 description="Enter the currency symbol
 to be used for average dinner prices." />
 </params>
</metadata>

The XML configuration file for a view is much shorter than the one used for an entire
extension. First, we enclose all of our data within the <metadata> tag. Next, we have
a <view> tag with a title parameter, which is set to the name we want to use in the
back end when referring to this view. The <message> tag is placed within this tag
and contains the description of the view seen on mouse over. Go to the back end and
select Menus | Main Menu, then click New. After selecting Restaurant Reviews as
the menu type, you should be presented with a screen like the following:

Chapter 8

[141]

Clicking on Default Layout under All will give you a configuration screen including
the menu item parameters box as seen in the following figure:

Defining the currency symbol in the configuration display in the front end will
require some modifications to the display class controlling individual reviews.
Open /components/com_reviews/views/review/view.html.php and make the
following highlighted modifications:

class ReviewViewReview extends JView
{
 function display($tpl = null)
 {
 global $option, $mainframe;
 $model = &$this->getModel();
 $user =& JFactory::getUser();
 $review = $model->getReview();
 $comments = $model->getComments();
 $pathway =& $mainframe->getPathWay();

Configuration Settings

[142]

 $backlink = JRoute::_('index.php?option=' . $option);

 $menu =& JMenu::getInstance();

 $item = $menu->getActive();

 $params =& $menu->getParams($item->id);

 $currency = $params->get('currency_symbol', '$');

 $review->review_date = JHTML::Date($review->review_date);

 if($review->smoking == 1)

 {

 $review->smoking = "Yes";

 }

 else

 {

 $review->smoking = "No";

 }

 for($i = 0; $i < count($comments); $i++)

 {

 $row =& $comments[$i];

 $row->comment_date = JHTML::Date($row->comment_date);

 }

 $pathway->addItem($review->name, '');

 $this->assignRef('review', $review);

 $this->assignRef('comments', $comments);

 $this->assignRef('backlink', $backlink);

 $this->assignRef('Itemid', $Itemid);

 $this->assignRef('option', $option);

 $this->assignRef('name', $user->_table->name);

 $this->assignRef('currency', $currency);

 parent::display($tpl);

 }

}

To include the currency symbol set in the configuration, we need to load the
parameters. Since the parameters are saved with the menu item pointing to the
component, we first use the getInstance() member function of JMenu to get a
reference to an object we set in $menu. We then call the getActive() member
function of $menu to get a reference to the current menu item. Finally, we get a
reference to the parameters object by calling the getParams() member function
of $menu and pass in the id member variable of $item. As with other parameters,
we use the get() member function to set $currency with the value of currency_
symbol, defaulting to $ if none is specified. This variable is then assigned by
reference to the ReviewViewReview object.

Chapter 8

[143]

The display template itself will also need an adjustment. Open /components/
com_reviews/views/review/tmpl/default.php and replace the $ symbol on the
highlighted line with this echo command:

<p class="contentheading">
 <?php echo $this->review->name; ?>
</p>
<p class="createdate">
 <?php echo $this->review->review_date; ?>
</p>
<p>
 <?php echo $this->review->quicktake; ?>
</p>
<p>Address: <?php echo $this->review->address; ?>
</p>
<p>Cuisine: <?php echo $this->review->cuisine; ?>
</p>
<p>Average dinner price:
 <?php echo $this->currency, $this->review->avg_dinner_price; ?>
</p>
<p>Credit cards:
 <?php echo $this->review->credit_cards; ?>
</p>
<p>Reservations:
 <?php echo $this->review->reservations; ?>
</p>
<p>Smoking:
 <?php echo $this->review->smoking ?>
</p>
<p>
 <?php echo $this->review->review; ?>
</p>
<p>Notes:
 <?php echo $this->review->notes; ?>
</p>
<a href="<?php echo $this->backlink; ?>">< return to the
 reviews
<?php if(count($this->comments)) : ?>

 <?php foreach($this->comments as $comment): ?>
 <p><?php echo $comment->full_name; ?> <?php
 echo $comment->comment_date; ?></p>
 <p><?php echo $comment->comment_text; ?></p>
 <?php endforeach; ?>

Configuration Settings

[144]

<?php endif; ?>

<?php echo $this->loadTemplate('form'); ?>

As with the previously added variables, we output the currency member variable
of the view object. We then immediately follow this with the restaurant's average
dinner price.

In addition to linking to all of the reviews in a directory style format, we want to
be able to link to individual reviews. When linking to these individual reviews, we
want the same control over the currency symbol that we now have for reviews as a
whole. To do so, we need to create metadata.xml in /components/com_reviews/
views/review with the following code:

<?xml version="1.0" encoding="utf8"?>
<metadata>
 <view title="Single Review">
 <message>
 <![CDATA[Shows individual reviews.]]>
 </message>
 </view>
 <params>
 <param name="id" type="text" size="3" default=""
 label="Review ID" description="Enter the ID
 of the review to be displayed." />
 <param name="currency_symbol" type="text" size="3"
 default="$" label="Currency Symbol"
 description="Enter the currency symbol to
 be used for average dinner prices." />
 </params>
</metadata>

This XML configuration is similar to the one we used for the All view. Besides the
labeling, the main difference is that we have an additional parameter where the
admin can add the ID of a specific review to be displayed. When creating a new
menu link using the Single Review link under Restaurant Reviews, you should
now get a parameters box that looks like the following image. Get the Review ID for
the review you wish to link to and enter it in.

Chapter 8

[145]

Although we will not have to make any modifications to the display class, we will
have to modify the model constructor to detect whether or not an ID has been set in
the menu item parameters. Open /components/com_reviews/models/review.php
and replace the __construct() function with the following code:

function __construct()
{
 parent::__construct();
 $params =& JSiteHelper::getMenuParams();
 $id = $params->get('id', 0);
 if(!$id)
 {
 $id = JRequest::getVar('id', '');
 }
 $this->_id = $id;
}

As in the previous version of __construct(), we call the JModel parent constructor
as we only want to add some steps to the class initialization process, not replace
it. We then get a reference to the current menu item's parameters by using the
getMenuParams() member function of JSiteHelper. We capture the value of the id
parameter in $id, defaulting to 0 if id is not set. The value of $id is then tested; if it's
set to 0, we attempt to get id from the request variables, defaulting to null if it does
not exist. Finally, we set the object's _id member variable to the value of $id.

After saving the model, go to the front end and follow the link you created to the
individual review. Your screen should look something like the following:

Configuration Settings

[146]

Summary
Through XML configuration files, we've been able to add several options without
creating separate tables to hold the values. Parameters have been added to modules,
plug-ins, and component views with minimally invasive code. Site administrators
are now able to use familiar controls to manage these options.

Packing Everything Together
Our restaurant reviewers are now quite satisfied with the development of the site;
satisfied enough to recommend it to their restaurant reviewing colleagues in other
cities. Our emails are now flooded with requests to produce similar sites. Instead of
producing each individual website, we will package the module, component, and
plug-ins so they can be sold! Our packaging process will cover the following tasks:

Listing all files
Packaging the component
Creating back-end menu options
Including SQL queries
Extra installation scripts
Distribution

Listing All Files
To create the installation packages for our elements, we will start with the XML files
we previously created to hold the configuration parameters. All the three extension
types require you to list all the files in the package. The installer will not copy over
files in the package that are not listed in the XML file.

•

•

•

•

•

•

Packing Everything Together

[148]

Packaging the Module
For our module, take the existing mod_reviews.xml file and add the following
highlighted code:

<?xml version="1.0" encoding="utf-8"?>
<install type="module" version="1.5">
 <name>Restaurant Reviews</name>
 <author>Sumptuous Software</author>
 <creationDate>January 2007</creationDate>
 <copyright>(C) 2007</copyright>
 <license>Commercial</license>
 <authorEmail>support@packtpub.com</authorEmail>
 <authorUrl>www.packtpub.com</authorUrl>
 <version>1.0</version>
 <description>A module for promoting restaurant
 reviews.</description>
 <files>
 <filename module="mod_reviews">mod_reviews.php</filename>
 <filename>helper.php</filename>
 <filename>tmpl/_review.php</filename>
 <filename>tmpl/bulleted.php</filename>
 <filename>tmpl/default.php</filename>
 </files>
 <params>
 <param name="random" type="radio" default="0"
 label="Randomize" description="Show random reviews">
 <option value="0">No</option>
 <option value="1">Yes</option>
 </param>
 <param name="@spacer" type="spacer" default=""
 label="" description="" />
 <param name="items" type="text" default="1"
 label="Display #" description="Number of
 reviews to display" />
 <param name="style" type="list" default="default"
 label="Display style" description="The style
 to use for displaying the reviews.">
 <option value="default">Flat</option>
 <option value="bulleted">Bulleted</option>
 </param>
 </params>
</install>

Chapter 9

[149]

Each file is listed in a <filename> element and all of these are enclosed in a
<files> element. For the mod_reviews.php file, we give the <filename> element a
parameter of module set to mod_reviews. This creates the directory mod_reviews in
the modules directory and also registers our module in the database. By doing this,
we automate the steps while writing the first module.

Packaging Plug-ins
The adjustments to the XML files for the plug-ins are very similar. Open /plugins/
conent/reviews.xml and make the following changes:

<?xml version="1.0" encoding="utf-8"?>

<install version="1.5" type="plugin" group="content">

 <name>Content - Restaurant Review Links</name>

 <author>Sumptuous Software</author>

 <creationDate>January 2007</creationDate>

 <copyright>(C) 2007</copyright>

 <license>Commercial</license>

 <authorEmail>support@packtpub.com</authorEmail>

 <authorUrl>www.packtpub.com</authorUrl>

 <version>1.0</version>

 <description>Searches for titles of restaurants in articles

 and turns them into review links.</description>

 <files>

 <filename plugin="reviews">reviews.php</filename>

 </files>

 <params>

 <param name="linkcode" type="textarea" default="" rows="5"

 cols="40" label="Custom Link Code" description="By

 using {link} and {title}, you can generate custom

 HTML output that includes the URL and review title

 respectively." />

 </params>

</install>

On the opening <install> tag, we add the group parameter and set it to content.
This ensures the plug-in is added to the correct directory. For the single file of code,
we have the parameter plugin set to the plug-in name, which is used along with the
group in the database to identify it.

Packing Everything Together

[150]

The process is identical for the reviewinfo plug-in:

<?xml version="1.0" encoding="utf-8"?>
<install version="1.5" type="plugin" group="content">
 <name>Content - Review Information</name>
 <author>Sumptuous Software</author>
 <creationDate>January 2007</creationDate>
 <copyright>(C) 2007</copyright>
 <license>Commercial</license>
 <authorEmail>support@packtpub.com</authorEmail>
 <authorUrl>www.packtpub.com</authorUrl>
 <version>1.0</version>
 <description>Turns {reviewinfo Name of your restaurant} into a table
with the review's essential details.</description>
 <files>
 <filename plugin="reviewinfo">reviewinfo.php</filename>
 </files>
 <params>
 <param name="address" type="radio" default="1"
 label="Display Address?" description="Toggles the
 display of the address in summaries.">
 <option value="1">Yes</option>
 <option value="0">No</option>
 </param>
 <param name="price_range" type="radio" default="1"
 label="Display Price Range?" description="Toggles the
 display of the price range in summaries.">
 <option value="1">Yes</option>
 <option value="0">No</option>
 </param>
 <param name="reservations" type="radio" default="1"
 label="Display Reservations?" description="Toggles the
 display of reservation policy in summaries.">
 <option value="1">Yes</option>
 <option value="0">No</option>
 </param>
 <param name="smoking" type="radio" default="1"
 label="Display Smoking?" description="Toggles the
 display of smoking policy in summaries.">
 <option value="1">Yes</option>
 <option value="0">No</option>
 </param>
 </params>
</install>

Chapter 9

[151]

The changes to the XML file for the search plug-in are similar to the first two, except
that here you set the group parameter in <install> to content. Notice that we are
using the same name for a plug-in in the search group as in the content group. This
is possible because of the manner in which XML is written.

<?xml version="1.0" encoding="utf-8"?>
<install version="1.5" type="plugin" group="search">
 <name>Search - Restaurant Reviews</name>
 <author>Sumptuous Software</author>
 <creationDate>January 2007</creationDate>
 <copyright>(C) 2007</copyright>
 <license>Commercial</license>
 <authorEmail>support@packtpub.com</authorEmail>
 <authorUrl>www.packtpub.com</authorUrl>
 <version>1.0</version>
 <description>Allows Searching of Restaurant Reviews</description>
 <files>
 <filename plugin="reviews">reviews.php</filename>
 </files>
 <params>
 <param name="search_limit" type="text" size="5" default="50"
 label="Search Limit" description="Number of Search items
 to return"/>
 </params>
</install>

Packaging the Component
Although preparing modules and plug-ins mainly involves listing the files,
components need some extra attention. Components are typically used to manage
records in the database, so queries to add the accompanying tables are necessary.
We will require a link to the component back end. Finally, we may wish to run some
additional set-up code just after installation or a clean-up script when the component
is removed. For the moment, create reviews.xml in /components/com_reviews and
add the following code:

<?xml version="1.0" encoding="utf-8"?>
<install type="component" version="1.5.0">
 <name>Reviews</name>
 <author>Sumptuous Software</author>
 <creationDate>January 2007</creationDate>
 <copyright>(C) 2007</copyright>
 <authorEmail>support@packtpub.com</authorEmail>
 <authorUrl>www.packtpub.com</authorUrl>
 <version>1.5.0</version>

Packing Everything Together

[152]

 <license>Commercial</license>
 <description>A component for writing and managing
 restaurant reviews.</description>
 <installfile>install.reviews.php</installfile>
 <uninstallfile>uninstall.reviews.php</uninstallfile>
 <install>
 <sql>
 <file driver="mysql" charset="utf8">install.mysql.sql</file>
 </sql>
 </install>
 <uninstall>
 <sql>
 <file driver="mysql" charset="utf8">uninstall.mysql.sql</file>
 </sql>
 </uninstall>
 <files>
 <filename>controller.php</filename>
 <filename>reviews.html.php</filename>
 <filename>reviews.php</filename>
 <filename>router.php</filename>
 <filename>models/review.php</filename>
 <filename>models/all.php</filename>
 <filename>views/all/view.html.php</filename>
 <filename>views/all/tmpl/default.php</filename>
 <filename>views/review/view.html.php</filename>
 <filename>views/review/tmpl/default.php</filename>
 <filename>views/review/tmpl/default_form.php</filename>
 </files>
 <administration>
 <menu>Restaurant Reviews</menu>
 <submenu>
 <menu link="option=com_reviews">Manage Reviews</menu>
 <menu task="comments">Manage Comments</menu>
 </submenu>
 <files folder="admin">
 <filename>install.mysql.sql</filename>
 <filename>uninstall.mysql.sql</filename>
 <filename>admin.reviews.html.php</filename>
 <filename>admin.reviews.php</filename>
 <filename>controller.php</filename>
 <filename>tables/comment.php</filename>
 <filename>tables/review.php</filename>
 <filename>toolbar.reviews.html.php</filename>
 <filename>toolbar.reviews.php</filename>
 </files>
 </administration>
</install>

Chapter 9

[153]

What has Changed from Joomla! 1.0?
For the most part, XML component installation files for Joomla! 1.5 are
similar to the ones used in 1.0. For the installation and uninstallation
queries, the SQL is now migrated to external files, with the flexibility
of including different SQL files for different database types. Also, the
back-end code is now sorted into a separate folder that you can specify in
the folder parameter of the <files> tag in the <administration>
section. This helps to avoid filename conflicts.

As with modules and plug-ins, we list all of the files related to the extension.
However, with components, we have back-end files as well as front-end files. The
back-end files are placed within the <administration> tag in a <files> tag where
the folder attribute is set to admin. The files enclosed within <installfile> and
<uninstallfile> tags are used to identify the custom installation and uninstallation
files that we will create in a moment. Although we will locate these files in /
components/com_reviews, they will be moved to /administrator/components/
com_reviews upon installation.

Beneath the tags for custom installation and uninstallation files are the <install>
and <uninstall> tags. Within these tags are the <sql> and <file> tags. These
are used to add SQL queries to the installation and uninstallation processes. Since
Joomla! supports different database types, you can include a different file for each
type (we will only create one for MySQL). Note that both the install.mysql.sql
and uninstall.mysql.sql files are listed within the <install> and <uninstall>
tags, as well as the <files> tag within the <administration> tag. If these files
are not also listed in the <administration> section, they will not be copied on
installation and the queries will consequently not be run. This is in contrast to the
files listed in the <installfile> and <uninstallfile> folders.

Including SQL Queries
To add the tables that we need for managing the reviews, some SQL queries should
be run. To do this, we will add the queries to some files that will be run when the
component is installed and uninstalled. Create the file install.mysql.sql in /
administrator/components/com_reviews and paste the following queries:

CREATE TABLE IF NOT EXISTS '#__reviews' (

 'id' int(11) NOT NULL auto_increment,

 'name' varchar(255) NOT NULL,

 'address' varchar(255) NOT NULL,

 'reservations' varchar(31) NOT NULL,

Packing Everything Together

[154]

 'quicktake' text NOT NULL,

 'review' text NOT NULL,

 'notes' text NOT NULL,

 'smoking' tinyint(1) NOT NULL default '0',

 'credit_cards' varchar(255) NOT NULL,

 'cuisine' varchar(31) NOT NULL,

 'avg_dinner_price' tinyint(3) NOT NULL default '0',

 'review_date' datetime NOT NULL,

 'published' tinyint(1) NOT NULL default '0',

 PRIMARY KEY ('id')

);

CREATE TABLE IF NOT EXISTS '#__reviews_comments' (

 'id' int(11) NOT NULL auto_increment,

 'review_id' int(11) NOT NULL,

 'user_id' int(11) NOT NULL,

 'full_name' varchar(50) NOT NULL,

 'comment_date' datetime NOT NULL,

 'comment_text' text NOT NULL,

 PRIMARY KEY ('id')

);

There are two differences from the originals encountered earlier. First, we've added
the additional qualifier IF NOT EXISTS. If someone has problems uninstalling the
component or already has these tables otherwise (perhaps from a backup), this will
prevent an error from occurring. Also, in these queries, we're using the #_ table
prefix notation to be replaced with the one on the host Joomla! System.

In addition to the installation SQL, we want to provide an uninstallation SQL script
that will remove the tables so that no trace of the component is left. Create the file
uninstall.mysql.sql in /administrator/components/com_reviews and add the
following code:

DROP TABLE #__reviews;

DROP TABLE #__reviews_comments;

The code from both of these files will be used as we've defined them within the
<install> and <uninstall> tags we added to the XML file.

Chapter 9

[155]

Creating Back-End Menu Items
Within the <administration> tags in the XML file, we define the items found under
the Components menu item in the back end. If we were only managing one type of
record, the following piece of XML would be sufficient for linking to the back end:

<menu>Restaurant Reviews</menu>

However, our component manages both reviews and comments. To handle this,
we want the Restaurant Reviews item to expand into two submenu items. In the
following XML, we enclose the menu items in a <submenu> tag. The first item uses
link to define a hard link to index2.php?option=com_reviews, while the second
uses task to form a link to index2.php?option=com_reviews&task=comments.

<submenu>
 <menu link="option=com_reviews">Manage Reviews</menu>
 <menu task="comments">Manage Comments</menu>
</submenu>

Extra Installation Scripts
When installing a component, Joomla! displays a standard success message along
with the description found in the XML file. A generic uninstallation message is
also generated upon removal. We can override both these with custom code.
Create the install.reviews.php file in /components/com_reviews and enter the
following code:

<?php
defined('_JEXEC') or die('Restricted access');
function com_install()
{
 ?>
 <div class="header">Congratulations, Restaurant Reviews is
 ready to roll!</div>
 <p>
 Congratulations on not only purchasing, but also installing
 Restaurant Reviews! Undoubtedly, you are about to
 embark on many joyous hours of authoring and
 organizing all of the hot spots for your city.
 To get started, navigate to Components, Restaurant
 Reviews, Manage Reviews and click the "New" button
 at the right-hand corner of the screen. Also, be
 sure to install the accompanying plugins and module
 to promote your reviews throughout the website!
 </p>

Packing Everything Together

[156]

 <?php
}
?>

For uninstallation, create the uninstall.reviews.php file in /components/com_
reviews containing the following code:

<?php
defined('_JEXEC') or die('Restricted access');
function com_uninstall()
{
 ?>
 <div class="header">The reviews are now removed from
 your system.</div>
 <p>
 We're sorry to see you go! To completely remove the
 software from your system, be sure to also
 uninstall the plugins and module.
 </p>
 <?php
}
?>

These scripts are referenced by the XML in the following two lines we added earlier
below the <description> tag:

<installfile>install.reviews.php</installfile>
<uninstallfile>uninstall.reviews.php</uninstallfile>

Joomla! will load the install.reviews.php file on installation and uninstall.
reviews.php on removal, but will call the functions com_install() and com_
uninstall() respectively. You can use these functions to do more than simply
display messages. The com_install() function is called just after the installation
process is complete, so it can be used to guide users through first-time configuration.
Likewise, the com_uninstall() function is called just before the component is
removed; any output generated will be buffered and displayed after the component
is removed. If com_install() or com_uninstall() return false, the process is rolled
back. This can be used to prevent components from being installed when the target
system does not meet the minimum requirements. It can also be used to prevent the
removal of a component that published menu links point to.

Chapter 9

[157]

Distribution
We now have all the files we need to package our extensions. For the module, put all
the files and folders into a .zip archive and place them in /modules/mod_review.
For the plug‑ins, create three separate .zip archives: first for the review information,
second for the review links, and third for the review searches. Each of these archives
should contain the .php and .xml file for the corresponding plug-in.

The component needs a little extra attention. Since both the front end and back end
contain a file named controller.php, we need to place one of the set of files in a
separate folder within the archive. Since the file listing has the administrative files
designated as being in the admin folder, this is the one we will create. The structure
of your component archive should look like the following:

After creating these five archives, all the code created in this book will be ready for
installation on any Joomla! system. Set up a clean installation of Joomla! (apart from
the one you used to develop the component) and install the component by going to
Extensions | Install/Uninstall, then use the Upload Package File form to upload the
.zip archive containing the reviews component. If everything works correctly, you
should see the following screen:

Packing Everything Together

[158]

Summary
We now have several .zip files ready to go with everything necessary to set the
Restaurant Reviews system up on another website. We've spared our end users from
confusing queries: they simply upload the files through the Extension manager
and start writing reviews! This is made possible through the XML configuration file
defining the scripts to run, queries to add, and files to copy on installation.

Index
B
back-end

data, processing 34, 35
database table, creating 23, 24
developing 23
list screen, creating 36-39
records, deleting 43, 44
records, editing 40-43
review form, creating 26- 33
table class, creating 25, 26

back-end code
comments, managing 98-105
pagination, adding 95-98
publishing control, reviews 93, 94
reorganizing 89-92
review manager 95

C
comments

adding 55
displaying 61
MVC design 77

components
packaging 151-153
parameters 140

components, Joomla
back end 13
developing 11
executing 12, 13
front end 13
registering 14-18
structure 11

configuration settings
parameters 127
parameters, for components 140
parameters, for modules 127
parameters, for plug-ins 131

controllers
back-end code, reorganizing 89-92
links, updating 88, 89
routes, updating 88, 89
switching through 85-88

D
database table

creating 23, 24
table class, creating 25, 26

data models
about 78
all reviews, modeling 78, 79
building 78
individual reviews, modeling 79, 80

F
front-end

comments, adding 55-60
comments, displaying 61
developing 45
reviews, displaying 48-50
reviews, listing 45-47
search engine friendly links,
generating 51, 52
url segments, building 52-54
url segments, parsing 54

[160]

I
information box plug-in 116

J
Joomla!

back end 13
back-end, developing 23
components, developing 11
components, packaging 151
component structure 11
configuration settings 127
extending 6
extensions, need for 5
front end 13
front-end, developing 45
modules, developing 65
module, packaging 148
package, distributing 156, 157
packaging 147
parameters, for components 140
parameters, for modules 127
parameters, for plug-ins 131
plug-ins 109
plug-ins, packaging 149
structure 11
toolbars, creating 18, 19

Joomla!, packaging
all files, listing 147
back-end menu items, creating 155
components, packaging 151
distributing 156, 157
extra installation scripts 155, 156
module, packaging 148
plug-ins, packaging 149
SQL queries, including 153, 154

Joomla! extensions
components, types 6
modules, types 7
need for 5
plug-ins, types 7
types 6

M
model, view, controller design See MVC

design
modules

basic module, configuring 68
basic module, creating 68
configuring 68
creating 68
customizing 74, 75
developing 65
helper class 70
layouts 71
packaging 148
parameters 127
registering 65-68
review module 68

MVC design
about 77
controllers 85
data models 78
views, migrating to 80

P
parameters

attributes 129
for components 140-145
for modules 127-131
for plug-ins 131-140
types 129, 130
XML configuration file, for components 140
XML configuration file, for modules 128
XML configuration file, for plug-ins 131

plug-ins
about 109
database queries 110, 111
events 114
information box plug-in 116
link plug-in 112-115
packaging 149-151
parameters 131
registering 110
reviews, searching 121-125

[161]

R
review form

creating 26-33
reviews

additional toolbars 106, 107
comments, managing 98-105
displaying 48
listing 45
pagination, adding 95-98
publishing controls 93, 94

S
search engine friendly links

generating 51
url segments, building 52
url segments, parsing 54

V
views

all views, viewing 81, 82
breadcrumbs, creating 83
migrating to 80
one view, viewing 82-85

	Learning Joomla! 1.5 Extension Development
	Table of Contents
	Preface
	Chapter 1: Joomla! Extension Development: An Overview
	Why Extend Joomla!
	Customization versus Extension
	How to Extend Joomla!
	Components
	Modules
	Plug-Ins

	Topic Overview
	Creating Toolbars and List Screens
	Maintaining a Consistent Look and Reducing Repetitive Code Using HTML Functions
	Accessing the Database and Managing Records
	Security and the Preferred Way of Getting Request Variables
	Menu Item Control
	Controlling the Logic Flow Within a Component
	Configuration Through XML Parameters
	Packaging and Distributing

	Our Example Project
	Summary

	Chapter 2: Getting Started with Component Development
	Joomla!'s Component Structure
	Executing the Component
	Joomla!'s Division between Front End and Back End
	Registering Your Component in the Database
	Creating Toolbars
	Available Toolbar Buttons

	Summary

	Chapter 3: Back-End Development
	Creating the Database Table
	Creating a Table Class
	Creating the Review Form
	Processing the Data
	Creating a List Screen
	Editing Records
	Deleting Records
	Summary

	Chapter 4: Front-End Development
	Listing the Reviews
	Displaying a Review
	Generating Search-Engine Friendly Links
	Building URL Segments
	Parsing URL Segments

	Adding Comments
	Displaying Comments
	Summary

	Chapter 5: Module Development
	Registering the Module in the Database
	Creating and Configuring a Basic Module
	Recruiting Some Helpers
	Try Some Different Layouts
	Mixing it Up

	Summary

	Chapter 6: Expanding the Project
	Model, View, Controller: Why?
	Building Data Models
	Modeling All Reviews
	Modeling Individual Reviews

	Migrating to Views
	Viewing All
	Viewing One

	Switching Through Controllers
	Updating Links and Routes

	Reorganizing the Back-End Code
	Publishing Controls for Reviews
	Adding Pagination
	Management for Comments
	Additional Toolbars
	Summary

	Chapter 7: Behind the Scenes: Plug-Ins
	Database Queries
	A Simple Link Plug-In
	An Information Box Plug-In
	Searching the Reviews
	Summary

	Chapter 8: Configuration Settings
	Adding Parameters to Extensions
	Parameters for Modules
	Parameters for Plug-Ins
	Parameters for Components
	Summary

	Chapter 9: Packing Everything Together
	Listing All Files
	Packaging the Module
	Packaging Plug-ins
	Packaging the Component
	Including SQL Queries
	Creating Back-End Menu Items
	Extra Installation Scripts
	Distribution
	Summary

	Index

